MSDD-YOLOX: An enhanced YOLOX for real-time surface defect detection of oranges by type

计算机科学 农学 环境科学 生物 园艺
作者
Jintao Feng,Zhipeng Wang,Shuai Wang,Shijie Tian,Huirong Xu
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:149: 126918-126918 被引量:10
标识
DOI:10.1016/j.eja.2023.126918
摘要

Using an online high-throughput detection system for sorting oranges during the post-harvest process helped improve the commercialization level of the oranges industry. Surface defects on oranges created a poor first impression for consumers, making the rapid detection of oranges surface defects a primary concern for online sorting systems. However, due to variations in defect size and the visual similarity of different defects, there were still some challenges in detecting and identifying various surface defects on orange fruits based on their types. To address these challenges, this study first categorized surface defects on oranges into three major categories: deformity, scarring, and disease spot, based on their causes and potential post-harvest losses. Subsequently, to achieve real-time detection of orange surface defects on the orange sorting machine, a YOLOX-based real-time multi-type surface defect detection algorithm (MSDD-YOLOX) for oranges was proposed. This algorithm significantly improved the detection effectiveness of scarring at different scales by introducing neck network residual connections and cascading of the neck network. To address the issue of missed detections in texture-based defects and improve the regression of predicted bounding boxes, focal loss and Complete-IoU (CIoU) were employed in the algorithm. The results showed that MSDD-YOLOX achieved F1 values of 88.3 %, 80.4 %, and 92.7 % for the detection of deformity, scarring, and disease spot, respectively, with an overall detection F1 value of 90.8 %. These values represented improvements of 13.1 %, 10.2 %, 4.5 %, and 6.4 %, respectively, compared to the baseline model. Furthermore, compared to other deep learning object detectors, namely Faster RCNN, RetinaNet, FCOS, and Swin-Transformer, the proposed algorithm achieved optimal detection accuracy. Additionally, the MSDD-YOLOX model had a compact size of only 8.98 M, enabling real-time detection on the fruit grading line with an inference speed of up to 64.2FPS. Another innovation of this research was the external validation conducted on green oranges from Hainan and mandarins from Zhejiang. The results of external testing demonstrated that MSDD-YOLOX achieved overall F1 values of 90.6 % and 81.1 % for citrus fruits in these two regions, effectively proving the online deployment capability of MSDD-YOLOX and providing a robust solution for external defect detection in citrus fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳佟冬卉完成签到,获得积分10
1秒前
Silence发布了新的文献求助10
1秒前
1秒前
通通通发布了新的文献求助10
2秒前
帅气的秘密完成签到 ,获得积分10
2秒前
领导范儿应助马建国采纳,获得10
2秒前
lysixsixsix完成签到,获得积分10
2秒前
3秒前
jia完成签到,获得积分10
3秒前
欣喜乐天发布了新的文献求助10
3秒前
Kiyotaka完成签到,获得积分10
3秒前
4秒前
季夏发布了新的文献求助10
4秒前
Tingshan发布了新的文献求助20
5秒前
背后的诺言完成签到 ,获得积分20
5秒前
GHOST完成签到,获得积分20
6秒前
6秒前
勤奋的蜗牛完成签到,获得积分20
6秒前
omo发布了新的文献求助10
6秒前
Akim应助糊糊采纳,获得10
7秒前
Zn应助dsjlove采纳,获得10
7秒前
月球宇航员完成签到,获得积分10
7秒前
7秒前
英姑应助亲爱的安德烈采纳,获得10
9秒前
今后应助workwork采纳,获得10
9秒前
9秒前
落后翠柏发布了新的文献求助10
9秒前
淡然凝丹完成签到,获得积分10
9秒前
Y_Jfeng完成签到,获得积分10
10秒前
潼熙甄完成签到 ,获得积分10
11秒前
Lucas应助糖糖采纳,获得10
11秒前
wyblobin发布了新的文献求助10
11秒前
星辰大海应助叶飞荷采纳,获得10
11秒前
wanmiao12完成签到,获得积分10
12秒前
12秒前
13秒前
lmr完成签到,获得积分10
13秒前
gu完成签到 ,获得积分10
14秒前
科研小白完成签到,获得积分10
14秒前
马建国发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762