清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MSDD-YOLOX: An enhanced YOLOX for real-time surface defect detection of oranges by type

计算机科学 农学 环境科学 生物 园艺
作者
Jintao Feng,Zhipeng Wang,Shuai Wang,Shijie Tian,Huirong Xu
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:149: 126918-126918 被引量:11
标识
DOI:10.1016/j.eja.2023.126918
摘要

Using an online high-throughput detection system for sorting oranges during the post-harvest process helped improve the commercialization level of the oranges industry. Surface defects on oranges created a poor first impression for consumers, making the rapid detection of oranges surface defects a primary concern for online sorting systems. However, due to variations in defect size and the visual similarity of different defects, there were still some challenges in detecting and identifying various surface defects on orange fruits based on their types. To address these challenges, this study first categorized surface defects on oranges into three major categories: deformity, scarring, and disease spot, based on their causes and potential post-harvest losses. Subsequently, to achieve real-time detection of orange surface defects on the orange sorting machine, a YOLOX-based real-time multi-type surface defect detection algorithm (MSDD-YOLOX) for oranges was proposed. This algorithm significantly improved the detection effectiveness of scarring at different scales by introducing neck network residual connections and cascading of the neck network. To address the issue of missed detections in texture-based defects and improve the regression of predicted bounding boxes, focal loss and Complete-IoU (CIoU) were employed in the algorithm. The results showed that MSDD-YOLOX achieved F1 values of 88.3 %, 80.4 %, and 92.7 % for the detection of deformity, scarring, and disease spot, respectively, with an overall detection F1 value of 90.8 %. These values represented improvements of 13.1 %, 10.2 %, 4.5 %, and 6.4 %, respectively, compared to the baseline model. Furthermore, compared to other deep learning object detectors, namely Faster RCNN, RetinaNet, FCOS, and Swin-Transformer, the proposed algorithm achieved optimal detection accuracy. Additionally, the MSDD-YOLOX model had a compact size of only 8.98 M, enabling real-time detection on the fruit grading line with an inference speed of up to 64.2FPS. Another innovation of this research was the external validation conducted on green oranges from Hainan and mandarins from Zhejiang. The results of external testing demonstrated that MSDD-YOLOX achieved overall F1 values of 90.6 % and 81.1 % for citrus fruits in these two regions, effectively proving the online deployment capability of MSDD-YOLOX and providing a robust solution for external defect detection in citrus fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲的山菡完成签到,获得积分10
6秒前
6秒前
11秒前
练得身形似鹤形完成签到 ,获得积分10
1分钟前
眯眯眼的安雁完成签到 ,获得积分10
1分钟前
方圆完成签到 ,获得积分10
1分钟前
科研通AI2S应助葛力采纳,获得10
1分钟前
太阳完成签到 ,获得积分10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
奋斗的飞柏完成签到 ,获得积分10
1分钟前
徐团伟完成签到 ,获得积分10
2分钟前
小欣子完成签到 ,获得积分10
2分钟前
chengmin完成签到 ,获得积分10
2分钟前
charih完成签到 ,获得积分10
2分钟前
9527完成签到,获得积分10
2分钟前
浮游应助葛力采纳,获得10
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
愤怒的念蕾完成签到,获得积分10
2分钟前
浮游应助葛力采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得50
2分钟前
zzhui完成签到,获得积分10
2分钟前
完美世界应助智慧金刚采纳,获得10
3分钟前
葛力完成签到,获得积分20
3分钟前
3分钟前
跳跳虎完成签到 ,获得积分10
3分钟前
智慧金刚发布了新的文献求助10
3分钟前
小刘同学发布了新的文献求助10
3分钟前
nav完成签到 ,获得积分10
3分钟前
种下梧桐树完成签到 ,获得积分10
3分钟前
3分钟前
雪菜大王完成签到,获得积分10
3分钟前
23435发布了新的文献求助20
3分钟前
科科通通完成签到,获得积分10
3分钟前
雪菜大王发布了新的文献求助10
4分钟前
时老完成签到 ,获得积分10
4分钟前
zly完成签到 ,获得积分10
4分钟前
小刘同学发布了新的文献求助10
4分钟前
科研通AI6应助PHD满采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450266
求助须知:如何正确求助?哪些是违规求助? 4558098
关于积分的说明 14265435
捐赠科研通 4481502
什么是DOI,文献DOI怎么找? 2454891
邀请新用户注册赠送积分活动 1445638
关于科研通互助平台的介绍 1421614