MSDD-YOLOX: An enhanced YOLOX for real-time surface defect detection of oranges by type

橙色(颜色) 计算机科学 人工智能 分类 算法 数学 生物 园艺
作者
Jintao Feng,Zhipeng Wang,Shuai Wang,Shijie Tian,Huirong Xu
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:149: 126918-126918 被引量:4
标识
DOI:10.1016/j.eja.2023.126918
摘要

Using an online high-throughput detection system for sorting oranges during the post-harvest process helped improve the commercialization level of the oranges industry. Surface defects on oranges created a poor first impression for consumers, making the rapid detection of oranges surface defects a primary concern for online sorting systems. However, due to variations in defect size and the visual similarity of different defects, there were still some challenges in detecting and identifying various surface defects on orange fruits based on their types. To address these challenges, this study first categorized surface defects on oranges into three major categories: deformity, scarring, and disease spot, based on their causes and potential post-harvest losses. Subsequently, to achieve real-time detection of orange surface defects on the orange sorting machine, a YOLOX-based real-time multi-type surface defect detection algorithm (MSDD-YOLOX) for oranges was proposed. This algorithm significantly improved the detection effectiveness of scarring at different scales by introducing neck network residual connections and cascading of the neck network. To address the issue of missed detections in texture-based defects and improve the regression of predicted bounding boxes, focal loss and Complete-IoU (CIoU) were employed in the algorithm. The results showed that MSDD-YOLOX achieved F1 values of 88.3 %, 80.4 %, and 92.7 % for the detection of deformity, scarring, and disease spot, respectively, with an overall detection F1 value of 90.8 %. These values represented improvements of 13.1 %, 10.2 %, 4.5 %, and 6.4 %, respectively, compared to the baseline model. Furthermore, compared to other deep learning object detectors, namely Faster RCNN, RetinaNet, FCOS, and Swin-Transformer, the proposed algorithm achieved optimal detection accuracy. Additionally, the MSDD-YOLOX model had a compact size of only 8.98 M, enabling real-time detection on the fruit grading line with an inference speed of up to 64.2FPS. Another innovation of this research was the external validation conducted on green oranges from Hainan and mandarins from Zhejiang. The results of external testing demonstrated that MSDD-YOLOX achieved overall F1 values of 90.6 % and 81.1 % for citrus fruits in these two regions, effectively proving the online deployment capability of MSDD-YOLOX and providing a robust solution for external defect detection in citrus fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MissXia完成签到,获得积分10
2秒前
kkk完成签到 ,获得积分10
2秒前
奥斯卡完成签到,获得积分0
3秒前
正在完成签到,获得积分10
4秒前
xbo完成签到,获得积分10
4秒前
6秒前
宝海青完成签到,获得积分10
6秒前
大模型应助royan2采纳,获得10
6秒前
6秒前
6秒前
柠曦发布了新的文献求助10
6秒前
半山完成签到,获得积分10
7秒前
HughWang完成签到,获得积分10
8秒前
大气的画板完成签到 ,获得积分10
8秒前
zhang完成签到,获得积分10
8秒前
feitian201861完成签到,获得积分10
9秒前
王王王王王王王完成签到,获得积分10
9秒前
无限雁丝完成签到,获得积分10
9秒前
背后的桐发布了新的文献求助10
10秒前
panpanpan发布了新的文献求助10
10秒前
烟花应助无限雁丝采纳,获得10
12秒前
13秒前
peterhent发布了新的文献求助10
14秒前
14秒前
笨笨青筠完成签到 ,获得积分10
16秒前
16秒前
17秒前
changfox发布了新的文献求助200
18秒前
大大蕾完成签到 ,获得积分10
18秒前
panx发布了新的文献求助10
18秒前
好名字完成签到 ,获得积分10
20秒前
科研小菜完成签到,获得积分10
24秒前
25秒前
iNk应助派大星采纳,获得20
26秒前
haoooooooooooooo完成签到,获得积分10
27秒前
27秒前
28秒前
panpanpan完成签到,获得积分10
29秒前
囚穆完成签到 ,获得积分10
29秒前
fhdgwmyx完成签到,获得积分10
29秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816164
关于积分的说明 7911772
捐赠科研通 2475878
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388