MSDD-YOLOX: An enhanced YOLOX for real-time surface defect detection of oranges by type

计算机科学 农学 环境科学 生物 园艺
作者
Jintao Feng,Zhipeng Wang,Shuai Wang,Shijie Tian,Huirong Xu
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:149: 126918-126918 被引量:11
标识
DOI:10.1016/j.eja.2023.126918
摘要

Using an online high-throughput detection system for sorting oranges during the post-harvest process helped improve the commercialization level of the oranges industry. Surface defects on oranges created a poor first impression for consumers, making the rapid detection of oranges surface defects a primary concern for online sorting systems. However, due to variations in defect size and the visual similarity of different defects, there were still some challenges in detecting and identifying various surface defects on orange fruits based on their types. To address these challenges, this study first categorized surface defects on oranges into three major categories: deformity, scarring, and disease spot, based on their causes and potential post-harvest losses. Subsequently, to achieve real-time detection of orange surface defects on the orange sorting machine, a YOLOX-based real-time multi-type surface defect detection algorithm (MSDD-YOLOX) for oranges was proposed. This algorithm significantly improved the detection effectiveness of scarring at different scales by introducing neck network residual connections and cascading of the neck network. To address the issue of missed detections in texture-based defects and improve the regression of predicted bounding boxes, focal loss and Complete-IoU (CIoU) were employed in the algorithm. The results showed that MSDD-YOLOX achieved F1 values of 88.3 %, 80.4 %, and 92.7 % for the detection of deformity, scarring, and disease spot, respectively, with an overall detection F1 value of 90.8 %. These values represented improvements of 13.1 %, 10.2 %, 4.5 %, and 6.4 %, respectively, compared to the baseline model. Furthermore, compared to other deep learning object detectors, namely Faster RCNN, RetinaNet, FCOS, and Swin-Transformer, the proposed algorithm achieved optimal detection accuracy. Additionally, the MSDD-YOLOX model had a compact size of only 8.98 M, enabling real-time detection on the fruit grading line with an inference speed of up to 64.2FPS. Another innovation of this research was the external validation conducted on green oranges from Hainan and mandarins from Zhejiang. The results of external testing demonstrated that MSDD-YOLOX achieved overall F1 values of 90.6 % and 81.1 % for citrus fruits in these two regions, effectively proving the online deployment capability of MSDD-YOLOX and providing a robust solution for external defect detection in citrus fruits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医学僧完成签到,获得积分20
刚刚
刚刚
MR发布了新的文献求助10
刚刚
1秒前
风清扬发布了新的文献求助100
2秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
哒哒完成签到,获得积分10
6秒前
李健应助00采纳,获得10
7秒前
小宋同学发布了新的文献求助10
7秒前
春雨发布了新的文献求助10
9秒前
Ferry完成签到,获得积分10
9秒前
9秒前
侠客完成签到,获得积分10
9秒前
10秒前
duo111完成签到,获得积分10
10秒前
10秒前
10秒前
adalove完成签到,获得积分10
10秒前
大个应助LATP采纳,获得10
11秒前
13秒前
13秒前
应稀发布了新的文献求助10
14秒前
小二郎应助Mo_Hog采纳,获得10
14秒前
juqiu发布了新的文献求助10
14秒前
娟娟SCI完成签到,获得积分10
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
lxl关闭了lxl文献求助
15秒前
oiu发布了新的文献求助10
16秒前
英俊的铭应助单申奥采纳,获得10
17秒前
leslie完成签到,获得积分10
17秒前
丘比特应助MR采纳,获得10
18秒前
Windsyang完成签到,获得积分10
18秒前
一叶扁舟完成签到,获得积分10
18秒前
梨花月发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721