已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MSDD-YOLOX: An enhanced YOLOX for real-time surface defect detection of oranges by type

计算机科学 农学 环境科学 生物 园艺
作者
Jintao Feng,Zhipeng Wang,Shuai Wang,Shijie Tian,Huirong Xu
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:149: 126918-126918 被引量:11
标识
DOI:10.1016/j.eja.2023.126918
摘要

Using an online high-throughput detection system for sorting oranges during the post-harvest process helped improve the commercialization level of the oranges industry. Surface defects on oranges created a poor first impression for consumers, making the rapid detection of oranges surface defects a primary concern for online sorting systems. However, due to variations in defect size and the visual similarity of different defects, there were still some challenges in detecting and identifying various surface defects on orange fruits based on their types. To address these challenges, this study first categorized surface defects on oranges into three major categories: deformity, scarring, and disease spot, based on their causes and potential post-harvest losses. Subsequently, to achieve real-time detection of orange surface defects on the orange sorting machine, a YOLOX-based real-time multi-type surface defect detection algorithm (MSDD-YOLOX) for oranges was proposed. This algorithm significantly improved the detection effectiveness of scarring at different scales by introducing neck network residual connections and cascading of the neck network. To address the issue of missed detections in texture-based defects and improve the regression of predicted bounding boxes, focal loss and Complete-IoU (CIoU) were employed in the algorithm. The results showed that MSDD-YOLOX achieved F1 values of 88.3 %, 80.4 %, and 92.7 % for the detection of deformity, scarring, and disease spot, respectively, with an overall detection F1 value of 90.8 %. These values represented improvements of 13.1 %, 10.2 %, 4.5 %, and 6.4 %, respectively, compared to the baseline model. Furthermore, compared to other deep learning object detectors, namely Faster RCNN, RetinaNet, FCOS, and Swin-Transformer, the proposed algorithm achieved optimal detection accuracy. Additionally, the MSDD-YOLOX model had a compact size of only 8.98 M, enabling real-time detection on the fruit grading line with an inference speed of up to 64.2FPS. Another innovation of this research was the external validation conducted on green oranges from Hainan and mandarins from Zhejiang. The results of external testing demonstrated that MSDD-YOLOX achieved overall F1 values of 90.6 % and 81.1 % for citrus fruits in these two regions, effectively proving the online deployment capability of MSDD-YOLOX and providing a robust solution for external defect detection in citrus fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧的乌完成签到,获得积分10
2秒前
wfrg完成签到 ,获得积分10
6秒前
打打应助FXY采纳,获得10
10秒前
沉静安荷发布了新的文献求助20
11秒前
刻苦的小土豆完成签到 ,获得积分10
15秒前
jackone发布了新的文献求助10
16秒前
Liufgui应助科研达人采纳,获得10
19秒前
22秒前
小熊发布了新的文献求助10
27秒前
30秒前
鲤鱼安青完成签到 ,获得积分10
33秒前
FXY发布了新的文献求助10
36秒前
37秒前
40秒前
43秒前
开霁完成签到 ,获得积分10
44秒前
Christian完成签到,获得积分10
45秒前
霜鸣发布了新的文献求助10
49秒前
江氏巨颏虎完成签到,获得积分10
49秒前
jackone完成签到,获得积分10
50秒前
罗实完成签到 ,获得积分10
55秒前
沉静安荷完成签到,获得积分10
55秒前
汉堡包应助WZ采纳,获得10
57秒前
1分钟前
大白完成签到 ,获得积分10
1分钟前
小潘完成签到 ,获得积分10
1分钟前
1分钟前
仓鼠球发布了新的文献求助30
1分钟前
赵雨霏完成签到 ,获得积分10
1分钟前
生动丑应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
悄悄完成签到 ,获得积分10
1分钟前
程子完成签到,获得积分10
1分钟前
John完成签到 ,获得积分10
1分钟前
1分钟前
mmyhn驳回了田様应助
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990008
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256121
捐赠科研通 3270913
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216