MSDD-YOLOX: An enhanced YOLOX for real-time surface defect detection of oranges by type

计算机科学 农学 环境科学 生物 园艺
作者
Jintao Feng,Zhipeng Wang,Shuai Wang,Shijie Tian,Huirong Xu
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:149: 126918-126918 被引量:11
标识
DOI:10.1016/j.eja.2023.126918
摘要

Using an online high-throughput detection system for sorting oranges during the post-harvest process helped improve the commercialization level of the oranges industry. Surface defects on oranges created a poor first impression for consumers, making the rapid detection of oranges surface defects a primary concern for online sorting systems. However, due to variations in defect size and the visual similarity of different defects, there were still some challenges in detecting and identifying various surface defects on orange fruits based on their types. To address these challenges, this study first categorized surface defects on oranges into three major categories: deformity, scarring, and disease spot, based on their causes and potential post-harvest losses. Subsequently, to achieve real-time detection of orange surface defects on the orange sorting machine, a YOLOX-based real-time multi-type surface defect detection algorithm (MSDD-YOLOX) for oranges was proposed. This algorithm significantly improved the detection effectiveness of scarring at different scales by introducing neck network residual connections and cascading of the neck network. To address the issue of missed detections in texture-based defects and improve the regression of predicted bounding boxes, focal loss and Complete-IoU (CIoU) were employed in the algorithm. The results showed that MSDD-YOLOX achieved F1 values of 88.3 %, 80.4 %, and 92.7 % for the detection of deformity, scarring, and disease spot, respectively, with an overall detection F1 value of 90.8 %. These values represented improvements of 13.1 %, 10.2 %, 4.5 %, and 6.4 %, respectively, compared to the baseline model. Furthermore, compared to other deep learning object detectors, namely Faster RCNN, RetinaNet, FCOS, and Swin-Transformer, the proposed algorithm achieved optimal detection accuracy. Additionally, the MSDD-YOLOX model had a compact size of only 8.98 M, enabling real-time detection on the fruit grading line with an inference speed of up to 64.2FPS. Another innovation of this research was the external validation conducted on green oranges from Hainan and mandarins from Zhejiang. The results of external testing demonstrated that MSDD-YOLOX achieved overall F1 values of 90.6 % and 81.1 % for citrus fruits in these two regions, effectively proving the online deployment capability of MSDD-YOLOX and providing a robust solution for external defect detection in citrus fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Zard采纳,获得10
刚刚
CHensby完成签到,获得积分10
1秒前
细心的盼易完成签到 ,获得积分10
1秒前
英俊的含蕾完成签到 ,获得积分10
2秒前
龙行天下完成签到,获得积分10
4秒前
小蘑菇应助WN采纳,获得10
5秒前
6秒前
6秒前
东郭一斩完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
平安喜乐发布了新的文献求助10
7秒前
左孤容完成签到 ,获得积分10
7秒前
wanmiao12完成签到,获得积分10
9秒前
yu发布了新的文献求助10
10秒前
mmmmm完成签到,获得积分10
11秒前
洁净白容完成签到,获得积分10
11秒前
大个应助孟孟采纳,获得10
11秒前
小镇的废物完成签到,获得积分10
11秒前
柴郡喵完成签到,获得积分10
12秒前
SYLH应助小熊采纳,获得10
13秒前
妹妹发布了新的文献求助10
13秒前
13秒前
赘婿应助我必定发nature采纳,获得20
14秒前
Ava应助kofbird采纳,获得50
15秒前
zz完成签到,获得积分10
15秒前
星辰大海应助ybwei2008_163采纳,获得10
15秒前
17秒前
17秒前
QJYKKK完成签到,获得积分10
17秒前
composite66完成签到,获得积分10
17秒前
ccchao发布了新的文献求助30
18秒前
充电宝应助十三采纳,获得10
18秒前
大个应助橙橙橙采纳,获得10
18秒前
Dandanhuang完成签到,获得积分10
18秒前
FashionBoy应助孟孟采纳,获得30
20秒前
畅快的刚完成签到,获得积分10
22秒前
22秒前
xxxx完成签到,获得积分10
22秒前
vain发布了新的文献求助10
22秒前
李健应助芒果小鹌鹑采纳,获得10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048