亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MSDD-YOLOX: An enhanced YOLOX for real-time surface defect detection of oranges by type

计算机科学 农学 环境科学 生物 园艺
作者
Jintao Feng,Zhipeng Wang,Shuai Wang,Shijie Tian,Huirong Xu
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:149: 126918-126918 被引量:11
标识
DOI:10.1016/j.eja.2023.126918
摘要

Using an online high-throughput detection system for sorting oranges during the post-harvest process helped improve the commercialization level of the oranges industry. Surface defects on oranges created a poor first impression for consumers, making the rapid detection of oranges surface defects a primary concern for online sorting systems. However, due to variations in defect size and the visual similarity of different defects, there were still some challenges in detecting and identifying various surface defects on orange fruits based on their types. To address these challenges, this study first categorized surface defects on oranges into three major categories: deformity, scarring, and disease spot, based on their causes and potential post-harvest losses. Subsequently, to achieve real-time detection of orange surface defects on the orange sorting machine, a YOLOX-based real-time multi-type surface defect detection algorithm (MSDD-YOLOX) for oranges was proposed. This algorithm significantly improved the detection effectiveness of scarring at different scales by introducing neck network residual connections and cascading of the neck network. To address the issue of missed detections in texture-based defects and improve the regression of predicted bounding boxes, focal loss and Complete-IoU (CIoU) were employed in the algorithm. The results showed that MSDD-YOLOX achieved F1 values of 88.3 %, 80.4 %, and 92.7 % for the detection of deformity, scarring, and disease spot, respectively, with an overall detection F1 value of 90.8 %. These values represented improvements of 13.1 %, 10.2 %, 4.5 %, and 6.4 %, respectively, compared to the baseline model. Furthermore, compared to other deep learning object detectors, namely Faster RCNN, RetinaNet, FCOS, and Swin-Transformer, the proposed algorithm achieved optimal detection accuracy. Additionally, the MSDD-YOLOX model had a compact size of only 8.98 M, enabling real-time detection on the fruit grading line with an inference speed of up to 64.2FPS. Another innovation of this research was the external validation conducted on green oranges from Hainan and mandarins from Zhejiang. The results of external testing demonstrated that MSDD-YOLOX achieved overall F1 values of 90.6 % and 81.1 % for citrus fruits in these two regions, effectively proving the online deployment capability of MSDD-YOLOX and providing a robust solution for external defect detection in citrus fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eusha完成签到,获得积分10
1秒前
轻松板栗发布了新的文献求助10
4秒前
YAYA完成签到 ,获得积分10
13秒前
23秒前
31秒前
32秒前
lili发布了新的文献求助10
36秒前
leotao发布了新的文献求助10
38秒前
Raunio完成签到,获得积分10
40秒前
科研通AI6应助轻松板栗采纳,获得10
46秒前
51秒前
kash想毕业完成签到,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
1分钟前
大方的数据线完成签到,获得积分10
1分钟前
秋日思语发布了新的文献求助10
1分钟前
1分钟前
Jasper应助null采纳,获得10
1分钟前
1分钟前
哈西辣妈发布了新的文献求助10
1分钟前
null重新开启了WZQ文献应助
1分钟前
1分钟前
Ecokarster发布了新的文献求助10
1分钟前
干净夏天完成签到 ,获得积分10
1分钟前
奈思完成签到 ,获得积分10
1分钟前
ka完成签到 ,获得积分10
2分钟前
guan完成签到,获得积分10
2分钟前
Ecokarster完成签到,获得积分10
2分钟前
2分钟前
aaa发布了新的文献求助10
2分钟前
roe完成签到 ,获得积分10
2分钟前
慕青应助aaa采纳,获得10
2分钟前
小小张完成签到,获得积分10
3分钟前
3分钟前
0514gr完成签到,获得积分10
3分钟前
aaa完成签到,获得积分20
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116017
求助须知:如何正确求助?哪些是违规求助? 4322796
关于积分的说明 13469502
捐赠科研通 4154900
什么是DOI,文献DOI怎么找? 2276848
邀请新用户注册赠送积分活动 1278737
关于科研通互助平台的介绍 1216709