Determining the Optimal Number of GAT and GCN Layers for Node Classification in Graph Neural Networks

计算机科学 图形 人工神经网络 水准点(测量) 人工智能 功率图分析 机器学习 模式识别(心理学) 理论计算机科学 大地测量学 地理
作者
Humaira Noor,Niful Islam,Md. Saddam Hossain Mukta,Nur Shazwani Kamarudin,Mohaimenul Azam Khan Raiaan,Sami Azam
标识
DOI:10.1109/icsecs58457.2023.10256323
摘要

Node classification in complex networks plays an important role including social network analysis and recommendation systems. Some graph neural networks such as Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT) have emerged as effective approaches for achieving high-performance classification in such tasks. However, constructing a graph neural network architecture is challenging particularly due to the complex task of determining the optimal number of layers. This study presents a mathematical formula for determining the optimal number of GCN and GAT hidden layers. The experiment was conducted on ten benchmark datasets, evaluating performance metrices such as accuracy, precision, recall, F1-score, and MCC for identifying the best estimation of number of hidden layers. According to the experimental findings, the number of GAT and GCN layers selected has a substantial impact on classification accuracy. Studies show that adding extra layers after the optimum number of layers has a negative or no impact on the classification performance. Our proposed approximation technique may provide valuable insights for enhancing efficiency and accuracy of the Graph Neural Network algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liwang9301完成签到,获得积分10
刚刚
ding应助开心采纳,获得10
刚刚
1秒前
酶没美镁完成签到,获得积分10
1秒前
韭菜完成签到,获得积分20
4秒前
隐形曼青应助不吃香菜采纳,获得10
5秒前
哭泣青烟完成签到 ,获得积分10
6秒前
HH应助巴拉巴拉采纳,获得10
7秒前
8秒前
9秒前
9秒前
9秒前
汉堡包应助冷酷的听兰采纳,获得10
11秒前
孟孟发布了新的文献求助10
13秒前
zengyan发布了新的文献求助10
13秒前
14秒前
HeNeArKrXeRn完成签到,获得积分10
14秒前
Ammon完成签到,获得积分10
14秒前
范月月完成签到 ,获得积分10
14秒前
虚心醉蝶发布了新的文献求助10
15秒前
17秒前
guofd发布了新的文献求助10
17秒前
17秒前
刘桔完成签到,获得积分10
18秒前
gxh66完成签到,获得积分10
19秒前
Orange应助huang采纳,获得10
20秒前
21秒前
dj发布了新的文献求助10
21秒前
2090完成签到 ,获得积分10
22秒前
1111111111111完成签到,获得积分10
23秒前
orixero应助南瓜灯Lample采纳,获得10
23秒前
jax完成签到,获得积分20
23秒前
斯文败类应助Hey采纳,获得10
24秒前
开心发布了新的文献求助10
24秒前
Shanshan完成签到,获得积分10
24秒前
24秒前
李健的小迷弟应助Qiqinnn采纳,获得10
25秒前
27秒前
司纤户羽完成签到,获得积分10
27秒前
Sssmmmyy完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023