Hyperspectral Rice Grain Image Reconstruction Using HR-ResNet Algorithm to Construct Rice Spectral Reflectance Profile

高光谱成像 人工智能 RGB颜色模型 均方误差 计算机科学 迭代重建 计算机视觉 残余物 规范化(社会学) 图像分辨率 模式识别(心理学) 遥感 数学 算法 统计 地质学 社会学 人类学
作者
Nadya Lailyshofa,Adhi Harmoko Saputro
标识
DOI:10.1109/icitri59340.2023.10249254
摘要

One of the imaging techniques to produce spectral information at the Near Infrared spectrum range is hyperspectral imaging. To minimize the high cost and complicated imaging techniques, hyperspectral image reconstruction is performed from RGB images. The HR-ResNet algorithm uses residual blocks by utilizing shortcut connections to reduce the vanishing of gradients and produce optimal model performance. Using the right resblock layer and the Batch Normalization layer can also speed up training time thereby increasing the performance of the reconstruction model. The performance evaluation will be tested using 2 evaluation metrics RMSE and MAE. Image acquisition was performed using a hyperspectral camera with spectral range of 400-1000 nm. The RGB image used as input was obtained by converting the image using the CIE 1931 color matching function. The dataset comparison between training, validating, and testing used was 50:25:25. Variation of the band numbers of target and image spatial size was also carried out to determine the performance of the reconstruction model. Based on the results, it can be seen that the reconstruction model is able to reconstruct hyperspectral images from RGB images with RMSE and MAE errors of 1.20 and 0.61, respectively. The variation in the band numbers of target also affects the performance of the model because the reconstruction can work better if using a smaller number of reconstruction target bands, while variations in image spatial size do not significantly affect the performance of the reconstruction model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
爆米花应助Carlos采纳,获得10
1秒前
细腻的荆发布了新的文献求助10
2秒前
2秒前
3秒前
nkdailingyun完成签到,获得积分10
4秒前
南小槿发布了新的文献求助10
4秒前
脑洞疼应助停停走走采纳,获得10
5秒前
赘婿应助徐捷宁采纳,获得10
6秒前
cc发布了新的文献求助10
6秒前
852应助SumMelbourne采纳,获得10
6秒前
仲孙龙吟完成签到,获得积分10
6秒前
cn发布了新的文献求助10
6秒前
慕青应助zhappy采纳,获得10
7秒前
CipherSage应助爱听歌笑寒采纳,获得10
7秒前
7秒前
沉123完成签到,获得积分10
8秒前
徐木木完成签到,获得积分10
8秒前
9秒前
丘比特应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
sduwl应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
陈12应助科研通管家采纳,获得10
11秒前
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128391
求助须知:如何正确求助?哪些是违规求助? 2779189
关于积分的说明 7742085
捐赠科研通 2434459
什么是DOI,文献DOI怎么找? 1293544
科研通“疑难数据库(出版商)”最低求助积分说明 623317
版权声明 600514