Predicting Solid-Particle Erosion Rate of Pipelines Using Support Vector Machine with Improved Sparrow Search Algorithm

支持向量机 管道运输 统计的 均方误差 水准点(测量) 算法 管道(软件) 计算机科学 数学优化 统计 数学 工程类 地质学 机器学习 大地测量学 环境工程 程序设计语言
作者
Haoyan Peng,Hongfang Lü,Zhao‐Dong Xu,Yijia Wang,Zhenwu Zhang
出处
期刊:Journal of Pipeline Systems Engineering and Practice [American Society of Civil Engineers]
卷期号:14 (2) 被引量:6
标识
DOI:10.1061/jpsea2.pseng-1367
摘要

The erosion of elbows by particles in shale gas pipelines poses a great threat to the production safety of pipelines. Accurate prediction of the erosion rate is critical to ensuring the safe operation of pipelines. Previous predictions of the erosion rate is based on experiments and numerical simulation. However, because many factors of affecting pipeline erosion lead to strong nonlinearity of the physical scene, these two methods are time-consuming and labor-intensive and have many assumptions. This paper presents a data-driven approach for efficiently predicting erosion rates in shale gas pipelines, which has a high prediction accuracy based on an amount of data without experiments and numerical simulation. The model mixes the adaptive t-distribution-based sparrow search algorithm and support vector machine. Through case studies, the following results were obtained: (1) the minimum mean square error (MSE) of the proposed model is less than 10%; (2) compared with the hybrid model without considering the adaptive t-distribution, the MSE of the proposed model is reduced by 32%; and (3) the MSE, Theil U statistic 1 (U1), and Theil U statistic 2 (U2) of the proposed model in the test set are 47%, 47%, and 34% lower than the average MSE, Theil U statistic 1 (U1), and Theil U statistic 2 (U2) of benchmark models, respectively. Two cases of multiphase flow and gas–solid conditions showed that the improved hybrid model has higher prediction accuracy than support vector machines with other optimizers and has strong generalization performance. This study may be helpful for pipeline maintenance and repair in practical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
先玩了玉完成签到,获得积分20
刚刚
完美世界应助奋斗映寒采纳,获得10
2秒前
2秒前
糖果屋发布了新的文献求助10
2秒前
3秒前
甜蜜星星发布了新的文献求助10
3秒前
wyx发布了新的文献求助10
3秒前
先玩了玉发布了新的文献求助20
3秒前
3秒前
小玲子发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
范博发布了新的文献求助10
5秒前
cyndi发布了新的文献求助10
6秒前
yjx完成签到,获得积分20
6秒前
所所应助清脆曼岚采纳,获得10
8秒前
蹦跶发布了新的文献求助10
8秒前
贰鸟应助英俊的吉祥采纳,获得20
8秒前
王云豆发布了新的文献求助10
9秒前
彭于晏应助三三四采纳,获得10
9秒前
9秒前
所所应助老吴采纳,获得10
9秒前
文静三颜发布了新的文献求助10
10秒前
Winkhl发布了新的文献求助10
11秒前
11秒前
激昂的背包完成签到,获得积分10
11秒前
烟花应助wyx采纳,获得10
13秒前
www发布了新的文献求助10
13秒前
13秒前
13秒前
15秒前
15秒前
慕青应助文静三颜采纳,获得10
15秒前
HongMou完成签到 ,获得积分10
16秒前
乐乐应助Winkhl采纳,获得10
16秒前
英姑应助王云豆采纳,获得10
16秒前
六78910完成签到,获得积分10
17秒前
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554493
求助须知:如何正确求助?哪些是违规求助? 3130313
关于积分的说明 9386036
捐赠科研通 2829580
什么是DOI,文献DOI怎么找? 1555633
邀请新用户注册赠送积分活动 726197
科研通“疑难数据库(出版商)”最低求助积分说明 715480