Urban surface deformation monitoring and prediction by integrating SBAS-InSAR and Elman neural network

干涉合成孔径雷达 全球导航卫星系统增强 人工神经网络 大地测量学 变形(气象学) 遥感 地理 曲面(拓扑) 地图学 变形监测 计算机科学 人工智能 地质学 全球导航卫星系统应用 气象学 全球定位系统 数学 几何学 电信 合成孔径雷达
作者
Chaoqun Teng,Lei Wang,Chuang Jiang
出处
期刊:Survey Review [Taylor & Francis]
卷期号:56 (394): 18-31 被引量:5
标识
DOI:10.1080/00396265.2022.2157119
摘要

AbstractThe existing prediction methods have complex model application, high requirements for data parameters, and are limited to the prediction of a single observation point. To address this problem, this paper proposes a deep learning-based surface subsidence prediction method. Taking Hefei City of China as the research area, the time-series surface deformation results of this area are obtained by using SBAS-InSAR, and then the SFLA intelligent algorithm and Elman neural network model are combined to predict the surface deformation of key urban areas, and the prediction results are compared and analyzed.The experimental results show that the prediction model proposed in this paper can not only accurately predict a single deformation point, but also predict regional land subsidence, and can be used for auxiliary decision-making of urban spatial planning, early warning of geological hazards and hazard mitigation.Keywords: Urban surface deformationSBAS-InSARLarge-scale deformation predictionTime-series predictionElman neural networkSFLA Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was funded by the National Natural Science Foundation of China [grant numbers 52074010, 41602357] and Natural Science Foundation for Distinguished Young Scholars of Anhui Province [grant number 2108085Y20].Notes on contributorsChaoqun TengChaoqun Teng (1997–) is currently a master candidate at Anhui University of Science and Technology, and his current research focuses on InSAR data processing and applications.Lei WangLei Wang (1984–), Professor, is now a member of International Association of Mine Surveying, graduated from China University of Mining and Technology, has published more than 30 SCI/EI papers, authorised 6 invention patents, won the first prize of surveying and mapping science and technology of China Society of Surveying and Mapping, his main research interests are focused on InSAR/TLS deformation monitoring, data processing and mine disaster monitoring, prediction and control.Chuang JiangChuang Jiang (1993–), Ph.D., graduated from Anhui University of Science and Technology. His research mainly focuses on the monitoring, prediction and control of mine disasters, identification and protection of mining damage, and new technologies of mine and underground engineering survey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助courage采纳,获得10
刚刚
明亮的藏花完成签到,获得积分10
1秒前
ghn123456789完成签到,获得积分10
1秒前
1秒前
一块巧克力完成签到,获得积分10
2秒前
bjx完成签到,获得积分20
2秒前
情怀应助根号派啊方采纳,获得10
3秒前
3秒前
赘婿应助enli采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
科研通AI5应助jenny采纳,获得10
4秒前
活泼沛菡发布了新的文献求助10
5秒前
酷波er应助虚幻盼晴采纳,获得10
5秒前
zhhr发布了新的文献求助10
6秒前
6秒前
刻苦觅荷发布了新的文献求助10
6秒前
7秒前
比蓝色更深完成签到,获得积分10
7秒前
无辜不言发布了新的文献求助20
8秒前
感动芷卉完成签到 ,获得积分10
8秒前
8秒前
大根队长完成签到,获得积分10
9秒前
LOVE0077完成签到,获得积分10
9秒前
9秒前
dfghjkl完成签到 ,获得积分10
10秒前
evee完成签到 ,获得积分10
10秒前
Cyber_relic发布了新的文献求助10
10秒前
11秒前
肥鹏完成签到,获得积分10
11秒前
11秒前
帝蒼完成签到,获得积分10
12秒前
12秒前
汉堡包应助迷路迎南采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
Van关注了科研通微信公众号
14秒前
15秒前
15秒前
15秒前
研友_LJQ4o8完成签到,获得积分10
16秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771