CTMFNet: CNN and Transformer Multiscale Fusion Network of Remote Sensing Urban Scene Imagery

计算机科学 遥感 人工智能 计算机视觉 变压器 图像融合 传感器融合 融合 地质学 图像(数学) 工程类 语言学 电气工程 哲学 电压
作者
Pengfei Song,Jinjiang Li,Zhiyong An,Hui Fan,Linwei Fan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:47
标识
DOI:10.1109/tgrs.2022.3232143
摘要

Semantic segmentation of remotely sensed urban scene images is widely demanded in areas such as land cover mapping, urban change detection, and environmental protection. With the development of deep learning, methods based on convolutional neural networks (CNNs) have been dominant due to their powerful ability to represent hierarchical feature information. However, the limitations of the convolution operation itself limit the network's ability to extract global contextual information. With the successful use of transformer in computer vision in recent years, transformer has shown great potential for modeling global contextual information. However, transformer is not sufficiently capable of capturing local detailed information. In this article, to explore the potential of the joint CNN and transformer mechanism for semantic segmentation of remotely sensed urban scenes, we propose a CNN and transformer multiscale fusion network (CTMFNet) based on encoding–decoding for urban scene understanding. To couple local–global context information more efficiently, we designed a dual backbone attention fusion module (DAFM) to couple the local and global context information of the dual-branch encoder. In addition, to bridge the semantic gap between scales, we built a multi-layer dense connectivity network (MDCN) as our decoder. The MDCN enables the full flow of semantic information between multiple scales to be fused with each other through upsampling and residual connectivity. We conducted extensive subjective and objective comparison experiments and ablation experiments on both the International Society of Photogrammetry and Remote Sensing (ISPRS) Vaihingen and ISPRS Potsdam datasets. Numerous experimental results have proven the superiority of our method compared to currently popular methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qunichy完成签到 ,获得积分10
刚刚
xibei完成签到 ,获得积分10
1秒前
1秒前
可爱的函函应助闪闪凡霜采纳,获得10
3秒前
陈同学发布了新的文献求助10
4秒前
giao快查应助正直的西牛采纳,获得20
4秒前
5秒前
xiaohu发布了新的文献求助10
5秒前
5秒前
YY洋发布了新的文献求助10
6秒前
小蘑菇应助单纯的访风采纳,获得10
6秒前
葛力发布了新的文献求助10
7秒前
坚强的紊发布了新的文献求助10
9秒前
火星上友易完成签到,获得积分10
9秒前
10秒前
wubobo完成签到,获得积分10
10秒前
666发布了新的文献求助10
10秒前
Mxue发布了新的文献求助10
10秒前
11秒前
谨慎啤酒发布了新的文献求助20
12秒前
yyyyy完成签到,获得积分10
14秒前
10000SCI完成签到,获得积分10
15秒前
义气的丹萱完成签到,获得积分20
15秒前
16秒前
17秒前
yuzhanli发布了新的文献求助30
17秒前
cctv18应助YY洋采纳,获得10
20秒前
20秒前
FNNR发布了新的文献求助30
20秒前
niuniu完成签到,获得积分20
20秒前
俏皮的一德完成签到,获得积分10
21秒前
KKK发布了新的文献求助10
21秒前
冷艳尔白发布了新的文献求助10
23秒前
大黄豆完成签到,获得积分10
23秒前
哈哈哈哈呵举报韩梅求助涉嫌违规
23秒前
24秒前
24秒前
Sue_mini完成签到 ,获得积分10
24秒前
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756864
求助须知:如何正确求助?哪些是违规求助? 3300215
关于积分的说明 10112900
捐赠科研通 3014778
什么是DOI,文献DOI怎么找? 1655700
邀请新用户注册赠送积分活动 790050
科研通“疑难数据库(出版商)”最低求助积分说明 753552