Multi-UAV Cooperative Short-Range Combat via Attention-Based Reinforcement Learning using Individual Reward Shaping

强化学习 计算机科学 航程(航空) 光学(聚焦) 功能(生物学) 人工智能 动作(物理) 分布式计算 工程类 量子力学 进化生物学 生物 光学 物理 航空航天工程
作者
Tianle Zhang,Tenghai Qiu,Zhen Liu,Zhiqiang Pu,Jianqiang Yi,Jinying Zhu,Ruiguang Hu
标识
DOI:10.1109/iros47612.2022.9982096
摘要

In this paper, we propose a novel distributed method based on attention-based deep reinforcement learning using individual reward shaping, for multiple unmanned aerial vehicles (UAVs) cooperative short-range combat mission. Specifically, a two-level attention distributed policy, composed of observation-level and communication-level attention networks, is designed to enable each UAV to selectively focus on important environmental features and messages, for enhancing the effectiveness of the cooperative policy. Moreover, due to the high complexity and stochasticity of the UAV combat mission, the learning of UAVs is tricky and low efficient. To embed knowledge to accelerate the policy learning, a potential-based individual reward function is constructed by implicitly translating the individual reward into the specific form of dynamic action potentials. In addition, an actor-critic training algorithm based on the centralized training and decentralized execution framework is adopted to train the policy network of UAV maneuver decision. We build a three-dimensional UAV simulation and training platform based on Unity for multi-UAV short-range combat missions. Simulation results demonstrate the effectiveness of the proposed method and the superiority of the attention policy and individual reward shaping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁真爱上芙蓉王完成签到,获得积分20
刚刚
丘比特应助肥妹最励志采纳,获得10
刚刚
yyyrrr发布了新的文献求助10
刚刚
CipherSage应助脆皮小小酥采纳,获得10
1秒前
棋士发布了新的文献求助10
1秒前
隐形的邦布完成签到,获得积分10
2秒前
Amy完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
派大星完成签到,获得积分10
4秒前
5秒前
沉默的玩偶完成签到,获得积分10
5秒前
6秒前
念65发布了新的文献求助10
7秒前
小涵完成签到,获得积分10
7秒前
7秒前
打打应助阿花阿花采纳,获得10
8秒前
8秒前
派大星发布了新的文献求助10
8秒前
9秒前
咲韶完成签到,获得积分10
9秒前
yyyrrr完成签到,获得积分10
9秒前
10秒前
Owen应助要苦就苦别人采纳,获得10
11秒前
爆米花应助易哒哒采纳,获得10
11秒前
12秒前
燚燚完成签到,获得积分20
12秒前
12秒前
一十六发布了新的文献求助10
13秒前
14秒前
Moihan完成签到,获得积分10
14秒前
14秒前
SHENLE发布了新的文献求助10
15秒前
义气的猫咪完成签到,获得积分10
15秒前
八块腹肌发布了新的文献求助10
15秒前
15秒前
念65完成签到,获得积分20
15秒前
双儿完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609