Physics-Informed Recurrent Neural Network With Fractional-Order Gradients for State-of-Charge Estimation of Lithium-Ion Battery

循环神经网络 计算机科学 反向传播 梯度下降 人工神经网络 荷电状态 电池(电) 人工智能 物理 功率(物理) 量子力学
作者
Yanan Wang,Xuebing Han,Dongxu Guo,Languang Lu,YangQuan Chen,Minggao Ouyang
出处
期刊:IEEE journal of radio frequency identification [Institute of Electrical and Electronics Engineers]
卷期号:6: 968-971 被引量:14
标识
DOI:10.1109/jrfid.2022.3211841
摘要

As a typical machine learning algorithm, neural networks (NNs) has been designed and developed for battery management system (BMS) with artificial intelligence. State of charge (SOC) estimation of lithium-ion battery (LIB) is the basis of BMS so as to widely employ NNs, and recurrent neural network (RNN) is usually selected to describe the time-series characteristics of LIB. However, RNN is a data-driven statistic black box, which cannot reveal electrochemical principle and learn inner Knowledge of LIB. This paper introduces fractionalorder gradients for RNN to improve its backpropagation process, so that network updates weights instructed by the fractionalorder characteristics of LIB. Our work provides two backpropagation patterns with fractional-order gradient descent and momentum for RNN, respectively, both resulting in a physicsinformed RNN for SOC estimation of LIB. The proposed physicsinformed RNN can conduct training in which the gradients and the loss of network is informed by the physical fractional-order laws of LIB. Experimental results under operation conditions of federal urban driving schedule (FUDS) are presented with satisfying SOC estimation accuracy. Furtherly, physics-informed RNN proposed in this paper is not limited to SOC estimation, but also other state estimation or even fault prognosis for LIB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注诗双发布了新的文献求助30
刚刚
冷傲的傲霜应助龙猫抱枕采纳,获得10
刚刚
wangxin发布了新的文献求助10
刚刚
呢呢完成签到,获得积分10
刚刚
Ha完成签到,获得积分10
1秒前
神揽星辰入梦完成签到,获得积分10
1秒前
满意元正发布了新的文献求助10
1秒前
旱田蜗牛发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
CodeCraft应助hahaha采纳,获得10
6秒前
DTT完成签到,获得积分10
7秒前
兜兜应助宁静致远采纳,获得10
7秒前
hhkj发布了新的文献求助10
9秒前
9秒前
Proddy发布了新的文献求助10
10秒前
乔心发布了新的文献求助10
11秒前
昆仑发布了新的文献求助10
13秒前
13秒前
斯文败类应助don采纳,获得10
14秒前
15秒前
15秒前
LYT完成签到,获得积分10
17秒前
亘木发布了新的文献求助10
18秒前
汤圆圆儿完成签到,获得积分10
18秒前
18秒前
zzz发布了新的文献求助10
20秒前
21秒前
昆仑完成签到,获得积分10
21秒前
中海发布了新的文献求助30
22秒前
华仔应助乔心采纳,获得10
23秒前
聪明可爱小绘理完成签到,获得积分10
24秒前
25秒前
26秒前
Proddy完成签到,获得积分10
27秒前
chenxin7271发布了新的文献求助10
29秒前
30秒前
don发布了新的文献求助10
31秒前
华仔应助zzz采纳,获得10
33秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265294
求助须知:如何正确求助?哪些是违规求助? 2905244
关于积分的说明 8333171
捐赠科研通 2575616
什么是DOI,文献DOI怎么找? 1399952
科研通“疑难数据库(出版商)”最低求助积分说明 654613
邀请新用户注册赠送积分活动 633471