Physics-Informed Recurrent Neural Network With Fractional-Order Gradients for State-of-Charge Estimation of Lithium-Ion Battery

循环神经网络 计算机科学 反向传播 梯度下降 人工神经网络 荷电状态 电池(电) 人工智能 物理 功率(物理) 量子力学
作者
Yanan Wang,Xuebing Han,Dongxu Guo,Languang Lu,YangQuan Chen,Minggao Ouyang
出处
期刊:IEEE journal of radio frequency identification [Institute of Electrical and Electronics Engineers]
卷期号:6: 968-971 被引量:19
标识
DOI:10.1109/jrfid.2022.3211841
摘要

As a typical machine learning algorithm, neural networks (NNs) has been designed and developed for battery management system (BMS) with artificial intelligence. State of charge (SOC) estimation of lithium-ion battery (LIB) is the basis of BMS so as to widely employ NNs, and recurrent neural network (RNN) is usually selected to describe the time-series characteristics of LIB. However, RNN is a data-driven statistic black box, which cannot reveal electrochemical principle and learn inner Knowledge of LIB. This paper introduces fractionalorder gradients for RNN to improve its backpropagation process, so that network updates weights instructed by the fractionalorder characteristics of LIB. Our work provides two backpropagation patterns with fractional-order gradient descent and momentum for RNN, respectively, both resulting in a physicsinformed RNN for SOC estimation of LIB. The proposed physicsinformed RNN can conduct training in which the gradients and the loss of network is informed by the physical fractional-order laws of LIB. Experimental results under operation conditions of federal urban driving schedule (FUDS) are presented with satisfying SOC estimation accuracy. Furtherly, physics-informed RNN proposed in this paper is not limited to SOC estimation, but also other state estimation or even fault prognosis for LIB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓晓发布了新的文献求助10
2秒前
QYR完成签到,获得积分10
6秒前
陈宗琴完成签到,获得积分10
6秒前
猪猪hero应助贵贵采纳,获得10
6秒前
越幸运完成签到 ,获得积分10
7秒前
luochen完成签到,获得积分10
7秒前
悦己完成签到,获得积分10
8秒前
ruby30完成签到,获得积分10
8秒前
Waaly完成签到,获得积分10
9秒前
韶芸遥完成签到,获得积分10
10秒前
SciGPT应助苹果花采纳,获得10
11秒前
风中的双完成签到 ,获得积分10
11秒前
Gorge完成签到,获得积分10
12秒前
旗树树完成签到,获得积分10
12秒前
lee完成签到,获得积分10
14秒前
清酒少年游完成签到,获得积分10
14秒前
秦时明月完成签到,获得积分10
15秒前
16秒前
淡然尔蝶完成签到,获得积分10
17秒前
18秒前
大气的雁桃完成签到,获得积分10
19秒前
十九岁的时差完成签到,获得积分10
19秒前
张乐群完成签到,获得积分10
21秒前
Pauline完成签到 ,获得积分10
23秒前
阿成完成签到,获得积分10
23秒前
23秒前
淡定白枫完成签到,获得积分10
26秒前
研友_gnvY5L完成签到,获得积分10
26秒前
淡然的芷荷完成签到 ,获得积分10
27秒前
橘猫ADD发布了新的文献求助10
27秒前
小西贝完成签到 ,获得积分10
29秒前
hkunyu完成签到 ,获得积分10
30秒前
like完成签到 ,获得积分10
31秒前
虚幻芷完成签到,获得积分10
31秒前
晨雾锁阳完成签到 ,获得积分10
32秒前
willam完成签到,获得积分10
32秒前
tuyibo完成签到 ,获得积分10
32秒前
张张张xxx完成签到,获得积分10
33秒前
youyouyun完成签到,获得积分10
33秒前
温眼张完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957182
求助须知:如何正确求助?哪些是违规求助? 3503225
关于积分的说明 11111729
捐赠科研通 3234307
什么是DOI,文献DOI怎么找? 1787887
邀请新用户注册赠送积分活动 870808
科研通“疑难数据库(出版商)”最低求助积分说明 802330