亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How machine learning can accelerate electrocatalysis discovery and optimization

电催化剂 背景(考古学) 计算机科学 表征(材料科学) 工艺优化 机器学习 吞吐量 过程(计算) 纳米技术 人工智能 生化工程 材料科学 化学 工程类 电化学 化学工程 古生物学 电极 无线 物理化学 操作系统 生物 电信
作者
Stephan N. Steinmann,Qing Wang,Zhi Wei Seh
出处
期刊:Materials horizons [Royal Society of Chemistry]
卷期号:10 (2): 393-406 被引量:55
标识
DOI:10.1039/d2mh01279k
摘要

Advances in machine learning (ML) provide the means to bypass bottlenecks in the discovery of new electrocatalysts using traditional approaches. In this review, we highlight the currently achieved work in ML-accelerated discovery and optimization of electrocatalysts via a tight collaboration between computational models and experiments. First, the applicability of available methods for constructing machine-learned potentials (MLPs), which provide accurate energies and forces for atomistic simulations, are discussed. Meanwhile, the current challenges for MLPs in the context of electrocatalysis are highlighted. Then, we review the recent progress in predicting catalytic activities using surrogate models, including microkinetic simulations and more global proxies thereof. Several typical applications of using ML to rationalize thermodynamic proxies and predict the adsorption and activation energies are also discussed. Next, recent developments of ML-assisted experiments for catalyst characterization, synthesis optimization and reaction condition optimization are illustrated. In particular, the applications in ML-enhanced spectra analysis and the use of ML to interpret experimental kinetic data are highlighted. Additionally, we also show how robotics are applied to high-throughput synthesis, characterization and testing of electrocatalysts to accelerate the materials exploration process and how this equipment can be assembled into self-driven laboratories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽战斗机完成签到 ,获得积分10
12秒前
WYS22发布了新的文献求助10
17秒前
科目三应助秋日思语采纳,获得10
35秒前
WYS22完成签到,获得积分10
44秒前
Kristopher完成签到 ,获得积分10
50秒前
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
wrl2023完成签到,获得积分10
1分钟前
英俊的铭应助观众采纳,获得10
2分钟前
最落幕完成签到 ,获得积分10
2分钟前
2分钟前
贺俊龙发布了新的文献求助30
2分钟前
研友_VZG7GZ应助贺俊龙采纳,获得10
2分钟前
Cherry发布了新的文献求助10
3分钟前
Cherry完成签到,获得积分10
3分钟前
大个应助科研通管家采纳,获得10
3分钟前
4分钟前
Lulu完成签到,获得积分10
5分钟前
journey完成签到 ,获得积分10
5分钟前
玛琳卡迪马完成签到,获得积分10
6分钟前
ysy完成签到,获得积分10
6分钟前
7分钟前
似乎一场梦完成签到 ,获得积分10
7分钟前
科研通AI5应助andrele采纳,获得10
7分钟前
小王发布了新的文献求助10
7分钟前
starry发布了新的文献求助10
7分钟前
Joanna完成签到,获得积分10
7分钟前
万能图书馆应助小王采纳,获得10
7分钟前
隐形曼青应助starry采纳,获得10
7分钟前
CipherSage应助科研通管家采纳,获得200
7分钟前
8分钟前
贺俊龙完成签到,获得积分10
8分钟前
贺俊龙发布了新的文献求助10
8分钟前
淡然绝山完成签到,获得积分10
8分钟前
山野完成签到 ,获得积分10
8分钟前
xupt唐僧完成签到,获得积分10
9分钟前
斯文败类应助淡然绝山采纳,获得10
9分钟前
花花糖果完成签到 ,获得积分10
9分钟前
大模型应助科研通管家采纳,获得10
9分钟前
胖小羊完成签到 ,获得积分10
9分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210943
求助须知:如何正确求助?哪些是违规求助? 4387557
关于积分的说明 13662973
捐赠科研通 4247533
什么是DOI,文献DOI怎么找? 2330349
邀请新用户注册赠送积分活动 1328118
关于科研通互助平台的介绍 1280881