How machine learning can accelerate electrocatalysis discovery and optimization

电催化剂 背景(考古学) 计算机科学 表征(材料科学) 工艺优化 机器学习 吞吐量 过程(计算) 纳米技术 人工智能 生化工程 材料科学 化学 工程类 电化学 化学工程 古生物学 电极 无线 物理化学 操作系统 生物 电信
作者
Stephan N. Steinmann,Qing Wang,Zhi Wei Seh
出处
期刊:Materials horizons [Royal Society of Chemistry]
卷期号:10 (2): 393-406 被引量:55
标识
DOI:10.1039/d2mh01279k
摘要

Advances in machine learning (ML) provide the means to bypass bottlenecks in the discovery of new electrocatalysts using traditional approaches. In this review, we highlight the currently achieved work in ML-accelerated discovery and optimization of electrocatalysts via a tight collaboration between computational models and experiments. First, the applicability of available methods for constructing machine-learned potentials (MLPs), which provide accurate energies and forces for atomistic simulations, are discussed. Meanwhile, the current challenges for MLPs in the context of electrocatalysis are highlighted. Then, we review the recent progress in predicting catalytic activities using surrogate models, including microkinetic simulations and more global proxies thereof. Several typical applications of using ML to rationalize thermodynamic proxies and predict the adsorption and activation energies are also discussed. Next, recent developments of ML-assisted experiments for catalyst characterization, synthesis optimization and reaction condition optimization are illustrated. In particular, the applications in ML-enhanced spectra analysis and the use of ML to interpret experimental kinetic data are highlighted. Additionally, we also show how robotics are applied to high-throughput synthesis, characterization and testing of electrocatalysts to accelerate the materials exploration process and how this equipment can be assembled into self-driven laboratories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于彦祖应助没烦恼采纳,获得20
1秒前
海北发布了新的文献求助10
1秒前
义气尔安发布了新的文献求助10
2秒前
2秒前
优秀的芯完成签到,获得积分10
5秒前
橙色小瓶子完成签到,获得积分10
6秒前
bkagyin应助DimerV采纳,获得10
7秒前
英姑应助evilbatuu采纳,获得10
9秒前
风清扬应助明亮剑采纳,获得10
12秒前
苗条的小肥羊完成签到,获得积分10
12秒前
15秒前
元万天发布了新的文献求助10
15秒前
16秒前
钱罐罐完成签到 ,获得积分10
16秒前
打工人要有打工魂完成签到,获得积分10
17秒前
aaaaaa发布了新的文献求助10
17秒前
jenningseastera应助橘栀采纳,获得10
18秒前
19秒前
19秒前
20秒前
汉堡包应助代代采纳,获得10
21秒前
r222发布了新的文献求助20
22秒前
梅花鹿发布了新的文献求助10
23秒前
24秒前
汉堡包应助dadadaxia采纳,获得10
24秒前
25秒前
ChenYI发布了新的文献求助10
25秒前
脑洞疼应助aaaaaa采纳,获得10
25秒前
27秒前
27秒前
27秒前
091完成签到 ,获得积分10
28秒前
zyzraylene完成签到,获得积分10
29秒前
30秒前
听风者发布了新的文献求助10
31秒前
31秒前
tiger完成签到,获得积分10
32秒前
32秒前
DJANGO发布了新的文献求助10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962670
求助须知:如何正确求助?哪些是违规求助? 3508680
关于积分的说明 11142146
捐赠科研通 3241403
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872935
科研通“疑难数据库(出版商)”最低求助积分说明 803517