A mechanically durable hybrid hydrogel electrolyte developed by controllable accelerated polymerization mechanism towards reliable aqueous zinc-ion battery

材料科学 电解质 聚合 硫化 化学工程 单体 极限抗拉强度 聚丙烯酰胺 复合材料 高分子化学 聚合物 电极 天然橡胶 化学 工程类 物理化学
作者
Shanguo Ji,Jiaxiang Qin,Shangshan Yang,Ping Shen,Yuanyuan Hu,Kai Yang,Hao Luo,Jing Xu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:55: 236-243 被引量:52
标识
DOI:10.1016/j.ensm.2022.11.050
摘要

Increasing boom of bendable, safe and economical aqueous energy storage devices puts forward more demands on the tolerance of hydrogel electrolytes. However, the development of such robust hydrogel electrolytes still remains a challenging risk due to the vulnerability of mechanical deformation and complex preparation process. Herein, we present a controllable accelerated polymerization (CAP) mechanism to fabricate the polyacrylamide (PAM)-based hybrid hydrogel electrolytes by one-step process within one minute at room temperature. The rapid free-radical reaction of acrylamide monomer is triggered by the high concentration of electrolyte salt (ZnSO4) benefiting from the collaboration of Zn2+ and SO42− which is proved by both a serious of experimental characterizations and theoretical calculations. A rigid and hydrophilic Na-montmorillonite lamella and ZnSO4 salt plasticized PAM-based (MMT-PAM) hybrid hydrogel electrolyte is prepared with a short gelation time (∼1 min). The MMT-PAM hydrogel electrolyte presents significantly enhanced mechanical properties (a tensile strength of 0.25 MPa, a compressive strength of 0.39 MPa, an elongation rate of 1075%, high storage modulus, and loss modulus) and high Zn2+ conductivity of 20.7 mS cm−1, which conduce to suppress the random growth of Zn dendrite. Consequently, the fabricated Zn//NaV3O8·1.5H2O batteries with MMT-PAM hydrogel achieve significantly boosted cycle stability and rate capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啵乐乐发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
momo完成签到,获得积分10
2秒前
慕青应助饕餮1235采纳,获得10
2秒前
小蘑菇应助CC采纳,获得10
3秒前
白白完成签到,获得积分10
3秒前
3秒前
3秒前
苏苏完成签到,获得积分10
4秒前
4秒前
wu完成签到,获得积分10
4秒前
4秒前
5秒前
MADKAI发布了新的文献求助10
5秒前
5秒前
李健的小迷弟应助111采纳,获得10
6秒前
Accept应助wintercyan采纳,获得20
6秒前
哲999完成签到,获得积分10
6秒前
Mian完成签到,获得积分10
6秒前
7秒前
7秒前
于嗣濠完成签到 ,获得积分10
7秒前
36456657应助CC采纳,获得10
7秒前
优雅山柏发布了新的文献求助10
8秒前
Jacky完成签到,获得积分10
8秒前
脑洞疼应助无情的白桃采纳,获得10
8秒前
mm发布了新的文献求助10
8秒前
9秒前
9秒前
zoko发布了新的文献求助10
9秒前
9秒前
曾经的臻发布了新的文献求助10
9秒前
华仔应助S1mple_gentleman采纳,获得10
9秒前
科研通AI5应助CC采纳,获得10
9秒前
9秒前
10秒前
10秒前
张静静完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740