Carbon Nanotube Fiber-Based Flexible Microelectrode for Electrochemical Glucose Sensors

微电极 材料科学 安培法 介电谱 碳纳米管 纤维 电极 纳米颗粒 化学工程 电化学 纳米技术 复合材料 化学 工程类 物理化学
作者
Sheza Muqaddas,Mohsin Javed,Sohail Nadeem,Muhammad Adeel Asghar,Ali Haider,Muhammad Ahmad,Ahmad Raza Ashraf,Arif Nazir,Munawar Iqbal,Norah Alwadai,Azhar Ahmad,Abid Ali
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (2): 2272-2280 被引量:40
标识
DOI:10.1021/acsomega.2c06594
摘要

Electrochemical sensors are gaining significant demand for real-time monitoring of health-related parameters such as temperature, heart rate, and blood glucose level. A fiber-like microelectrode composed of copper oxide-modified carbon nanotubes (CuO@CNTFs) has been developed as a flexible and wearable glucose sensor with remarkable catalytic activity. The unidimensional structure of CNT fibers displayed efficient conductivity with enhanced mechanical strength, which makes these fibers far superior as compared to other fibrous-like materials. Copper oxide (CuO) nanoparticles were deposited over the surface of CNT fibers by a binder-free facile electrodeposition approach followed by thermal treatment that enhanced the performance of non-enzymatic glucose sensors. Scanning electron microscopy and energy-dispersive X-ray analysis confirmed the successful deposition of CuO nanoparticles over the fiber surface. Amperometric and voltammetric studies of fiber-based microelectrodes (CuO@CNTFs) toward glucose sensing showed an excellent sensitivity of ∼3000 μA/mM cm2, a low detection limit of 1.4 μM, and a wide linear range of up to 13 mM. The superior performance of the microelectrode is attributed to the synergistic effect of the electrocatalytic activity of CuO nanoparticles and the excellent conductivity of CNT fibers. A lower charge transfer resistance value obtained via electrochemical impedance spectroscopy (EIS) also demonstrated the superior electrode performance. This work demonstrates a facile approach for developing CNT fiber-based microelectrodes as a promising solution for flexible and disposable non-enzymatic glucose sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的半凡完成签到,获得积分10
刚刚
zdd发布了新的文献求助10
刚刚
快乐帽子发布了新的文献求助10
刚刚
刚刚
乐乐妈发布了新的文献求助10
刚刚
1秒前
zhangfuchao发布了新的文献求助10
1秒前
涂生完成签到,获得积分10
1秒前
1秒前
SYX发布了新的文献求助10
3秒前
3秒前
花生完成签到 ,获得积分10
3秒前
xuuuu驳回了Jasper应助
3秒前
菠萝吹雪完成签到,获得积分10
4秒前
hh驳回了Lucas应助
5秒前
思源应助付小蓉采纳,获得10
5秒前
Dosomething发布了新的文献求助10
5秒前
卡卡卡发布了新的文献求助10
6秒前
6秒前
Nauyt完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
8秒前
惜寒完成签到 ,获得积分10
9秒前
Lucas应助语上采纳,获得10
9秒前
zxz完成签到,获得积分20
9秒前
乐乐妈完成签到,获得积分10
9秒前
小包完成签到 ,获得积分10
10秒前
10秒前
11秒前
清a完成签到,获得积分20
11秒前
11秒前
隐形曼青应助优雅涔雨采纳,获得10
11秒前
sunny完成签到,获得积分10
11秒前
11秒前
小二郎应助炙热听安采纳,获得10
11秒前
12秒前
xziyou发布了新的文献求助10
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474762
求助须知:如何正确求助?哪些是违规求助? 3066860
关于积分的说明 9101503
捐赠科研通 2758260
什么是DOI,文献DOI怎么找? 1513498
邀请新用户注册赠送积分活动 699576
科研通“疑难数据库(出版商)”最低求助积分说明 699031