Complementarity-Aware Space Learning for Video-Text Retrieval

计算机科学 互补性(分子生物学) 人工智能 遗传学 生物
作者
Jinkuan Zhu,Pengpeng Zeng,Lianli Gao,Gongfu Li,Dongliang Liao,Jingkuan Song
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 4362-4374 被引量:15
标识
DOI:10.1109/tcsvt.2023.3235523
摘要

In general, videos are powerful at recording physical patterns (e.g., spatial layout) while texts are great at describing abstract symbols (e.g., emotion). When video and text are used in multi-modal tasks, they are claimed to be complementary and their distinct information is crucial. However, when it comes to cross-modal tasks (e.g., retrieval), existing works usually use their common part in the form of common space learning while their distinct information is abandoned. In this paper, we argue that distinct information is also beneficial for cross-modal retrieval. To address this problem, we propose a divide-and-conquer learning approach, namely Complementarity-aware Space Learning (CSL), by recasting this challenge into learning of two spaces (i.e., latent and symbolic spaces) to simultaneously explore their common and distinct information by considering multi-modal complementary character. Specifically, we first propose to learn a symbolic space from video with a memory-based video encoder and a symbolic generator. In contrast, we also introduce learning a latent space from text with a text encoder and a memory-based latent feature selector. Finally, we propose a complementarity-aware loss by integrating two spaces to facilitate video-text retrieval tasks. Extensive experiments show that our approach outperforms existing state-of-the-art methods by 5.1%, 2.1% and 0.9% of R@10 for text-to-video retrieval on three benchmarks, respectively. Ablation study also verifies that the distinct information from video and text improves the retrieval performance. Trained models and source code have been released at https://github.com/NovaMind-Z/CSL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyan_long完成签到,获得积分10
1秒前
Lucas应助跳跃仙人掌采纳,获得10
5秒前
Hello应助跳跃仙人掌采纳,获得10
5秒前
小二郎应助跳跃仙人掌采纳,获得10
5秒前
wanci应助跳跃仙人掌采纳,获得10
5秒前
领导范儿应助跳跃仙人掌采纳,获得10
5秒前
Wsf完成签到,获得积分10
6秒前
7秒前
英俊的铭应助小乔采纳,获得10
8秒前
9秒前
LEO完成签到 ,获得积分10
9秒前
12秒前
星空完成签到,获得积分10
12秒前
单纯访枫完成签到 ,获得积分10
13秒前
13秒前
ycg发布了新的文献求助10
14秒前
哭泣的缘郡完成签到 ,获得积分10
14秒前
jt完成签到,获得积分10
18秒前
齐半青完成签到,获得积分10
18秒前
喝下午茶的狗完成签到,获得积分10
19秒前
李志远完成签到,获得积分10
19秒前
西番雅发布了新的文献求助10
20秒前
21秒前
22秒前
sxy0604完成签到,获得积分10
22秒前
小乔完成签到,获得积分10
23秒前
pan完成签到 ,获得积分10
24秒前
24秒前
好好学习完成签到,获得积分10
25秒前
小乔发布了新的文献求助10
25秒前
25秒前
老衲完成签到,获得积分0
26秒前
子陵完成签到 ,获得积分10
27秒前
27秒前
海风发布了新的文献求助30
28秒前
浮生发布了新的文献求助10
33秒前
诗轩发布了新的文献求助10
33秒前
lion完成签到 ,获得积分10
33秒前
humengxiao完成签到,获得积分10
34秒前
青椒肉丝完成签到,获得积分10
38秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262667
求助须知:如何正确求助?哪些是违规求助? 2903265
关于积分的说明 8324749
捐赠科研通 2573377
什么是DOI,文献DOI怎么找? 1398211
科研通“疑难数据库(出版商)”最低求助积分说明 654024
邀请新用户注册赠送积分活动 632642