已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Complementarity-Aware Space Learning for Video-Text Retrieval

计算机科学 互补性(分子生物学) 人工智能 遗传学 生物
作者
Jinkuan Zhu,Pengpeng Zeng,Lianli Gao,Gongfu Li,Dongliang Liao,Jingkuan Song
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 4362-4374 被引量:24
标识
DOI:10.1109/tcsvt.2023.3235523
摘要

In general, videos are powerful at recording physical patterns (e.g., spatial layout) while texts are great at describing abstract symbols (e.g., emotion). When video and text are used in multi-modal tasks, they are claimed to be complementary and their distinct information is crucial. However, when it comes to cross-modal tasks (e.g., retrieval), existing works usually use their common part in the form of common space learning while their distinct information is abandoned. In this paper, we argue that distinct information is also beneficial for cross-modal retrieval. To address this problem, we propose a divide-and-conquer learning approach, namely Complementarity-aware Space Learning (CSL), by recasting this challenge into learning of two spaces (i.e., latent and symbolic spaces) to simultaneously explore their common and distinct information by considering multi-modal complementary character. Specifically, we first propose to learn a symbolic space from video with a memory-based video encoder and a symbolic generator. In contrast, we also introduce learning a latent space from text with a text encoder and a memory-based latent feature selector. Finally, we propose a complementarity-aware loss by integrating two spaces to facilitate video-text retrieval tasks. Extensive experiments show that our approach outperforms existing state-of-the-art methods by 5.1%, 2.1% and 0.9% of R@10 for text-to-video retrieval on three benchmarks, respectively. Ablation study also verifies that the distinct information from video and text improves the retrieval performance. Trained models and source code have been released at https://github.com/NovaMind-Z/CSL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助一十六采纳,获得10
4秒前
什申完成签到 ,获得积分10
4秒前
5秒前
FaFa发布了新的文献求助10
5秒前
Ferry完成签到,获得积分10
7秒前
在水一方应助刘佳采纳,获得10
7秒前
月冷完成签到 ,获得积分10
7秒前
down完成签到,获得积分10
9秒前
liu关闭了liu文献求助
9秒前
白衣完成签到,获得积分10
9秒前
一十六完成签到,获得积分10
13秒前
14秒前
美满平松完成签到 ,获得积分10
14秒前
16秒前
李健应助Lcx采纳,获得10
16秒前
可爱的函函应助虾饺核采纳,获得10
16秒前
LuxuryLuo发布了新的文献求助10
19秒前
21秒前
22秒前
在水一方应助等待的若采纳,获得10
22秒前
Deerqueen发布了新的文献求助10
22秒前
23秒前
23秒前
Orange应助pp采纳,获得10
24秒前
所所应助daidai采纳,获得10
26秒前
科研通AI6应助威武荔枝采纳,获得10
29秒前
虾饺核发布了新的文献求助10
29秒前
木鱼大呆发布了新的文献求助10
31秒前
山药汤完成签到 ,获得积分10
32秒前
完美世界应助王顺扬采纳,获得10
32秒前
搜集达人应助应急食品采纳,获得10
34秒前
齐柏z完成签到,获得积分10
35秒前
慕青应助自觉画板采纳,获得10
38秒前
39秒前
40秒前
团结完成签到 ,获得积分10
40秒前
科研通AI6应助LuxuryLuo采纳,获得10
40秒前
儒雅香彤完成签到 ,获得积分10
41秒前
JamesPei应助斯文的文轩采纳,获得10
42秒前
Orange应助YJT采纳,获得10
43秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384801
求助须知:如何正确求助?哪些是违规求助? 4507584
关于积分的说明 14028551
捐赠科研通 4417311
什么是DOI,文献DOI怎么找? 2426403
邀请新用户注册赠送积分活动 1419155
关于科研通互助平台的介绍 1397485