Complementarity-Aware Space Learning for Video-Text Retrieval

计算机科学 互补性(分子生物学) 人工智能 生物 遗传学
作者
Jinkuan Zhu,Pengpeng Zeng,Lianli Gao,Gongfu Li,Dongliang Liao,Jingkuan Song
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 4362-4374 被引量:15
标识
DOI:10.1109/tcsvt.2023.3235523
摘要

In general, videos are powerful at recording physical patterns (e.g., spatial layout) while texts are great at describing abstract symbols (e.g., emotion). When video and text are used in multi-modal tasks, they are claimed to be complementary and their distinct information is crucial. However, when it comes to cross-modal tasks (e.g., retrieval), existing works usually use their common part in the form of common space learning while their distinct information is abandoned. In this paper, we argue that distinct information is also beneficial for cross-modal retrieval. To address this problem, we propose a divide-and-conquer learning approach, namely Complementarity-aware Space Learning (CSL), by recasting this challenge into learning of two spaces (i.e., latent and symbolic spaces) to simultaneously explore their common and distinct information by considering multi-modal complementary character. Specifically, we first propose to learn a symbolic space from video with a memory-based video encoder and a symbolic generator. In contrast, we also introduce learning a latent space from text with a text encoder and a memory-based latent feature selector. Finally, we propose a complementarity-aware loss by integrating two spaces to facilitate video-text retrieval tasks. Extensive experiments show that our approach outperforms existing state-of-the-art methods by 5.1%, 2.1% and 0.9% of R@10 for text-to-video retrieval on three benchmarks, respectively. Ablation study also verifies that the distinct information from video and text improves the retrieval performance. Trained models and source code have been released at https://github.com/NovaMind-Z/CSL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luqiu完成签到,获得积分10
1秒前
TaoJ完成签到,获得积分0
1秒前
AAAsun完成签到,获得积分10
1秒前
2秒前
SAODEN发布了新的文献求助10
2秒前
3秒前
5秒前
coesite发布了新的文献求助10
5秒前
勾晓彤完成签到,获得积分10
6秒前
6秒前
6秒前
Emma完成签到,获得积分10
7秒前
Atom完成签到,获得积分10
7秒前
英姑应助大君哥采纳,获得10
7秒前
7秒前
虚拟的丹萱完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
Chelry发布了新的文献求助10
9秒前
10秒前
gyr发布了新的文献求助20
10秒前
majiko发布了新的文献求助10
10秒前
Jenkin完成签到,获得积分10
12秒前
舒心的山晴完成签到,获得积分10
12秒前
古月发布了新的文献求助10
13秒前
wangwangdui发布了新的文献求助30
14秒前
Sunmmon完成签到,获得积分10
15秒前
ice发布了新的文献求助10
15秒前
dorkoom完成签到,获得积分10
15秒前
含蓄寄文发布了新的文献求助10
17秒前
弯弯完成签到 ,获得积分10
17秒前
充电宝应助大花生采纳,获得10
17秒前
17秒前
18秒前
20秒前
我是老大应助Nancy采纳,获得10
20秒前
liiiiiii关注了科研通微信公众号
20秒前
辇道增七应助coesite采纳,获得10
20秒前
大君哥发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600