A Dual-Stage-Recognition Network for Distributed Optical Fiber Sensing Perimeter Security System

计算机科学 入侵检测系统 人工智能 模式识别(心理学) 活动识别 分类器(UML) 特征提取 分布式声传感 决策树 人工神经网络 恒虚警率 光纤 光纤传感器 电信
作者
Tao He,Qizhen Sun,Shi-Xiong Zhang,Hao Li,Baoqiang Yan,Cunzheng Fan,Zhijun Yan,Deming Liu
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:41 (13): 4331-4340 被引量:5
标识
DOI:10.1109/jlt.2022.3222472
摘要

Accurate intrusion recognition along the optical fiber is still an enormous challenge in the distributed acoustic sensing (DAS) based security system. Especially in the complex environments, various unknown disturbs such as the animal activities will lead to high false alarm rate of intrusion detection system. In this work, an accurate and effective intrusion pattern recognition using a dual-stage-recognition network is proposed and demonstrated for practical environments with various animal activities and mechanical movements. The dual-stage-recognition network consists of the pre-recognition stage for shallow classification and the sub-recognition stage for discriminating the similar events. In the pre-recognition stage, three target events of non-intrusion, human-animal activities and mechanical movements can be classified by the decision tree classifier based on the temporal energy and the frequency spectrum information. After that, in the sub-recognition stage, the target events of human and various animal activities can be further distinguished by the combination of the time-frequency analysis and BP neural network. Besides, in order to improve the computation efficiency of BP network model, the characteristics information of the time-frequency energy distribution is efficiently compressed by the proportion statistics of four energy-levels. The field test of a month proves that the proposed method can realize a high average recognition accuracy rate of 97.6% for five typical events with a fast average response time of 0.253 s, which is very promising in the intrusion events recognition in practical environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助单薄的映之采纳,获得10
2秒前
事事顺利发布了新的文献求助10
2秒前
科研菜鸟完成签到,获得积分10
5秒前
6秒前
Crane发布了新的文献求助10
6秒前
Singularity举报壮观映波求助涉嫌违规
7秒前
坚定筮发布了新的文献求助10
7秒前
野原发布了新的文献求助10
7秒前
香蕉觅云应助byecslx采纳,获得10
8秒前
Xiaopu发布了新的文献求助10
8秒前
淀粉肠发布了新的文献求助10
9秒前
10秒前
Karst颜完成签到,获得积分10
12秒前
zhouleiwang发布了新的文献求助10
12秒前
孟德尔吃豌豆完成签到,获得积分10
13秒前
14秒前
五十年老西医完成签到,获得积分10
14秒前
洗剪吹发布了新的文献求助10
16秒前
小蘑菇应助发酱采纳,获得10
16秒前
17秒前
包容的海豚完成签到 ,获得积分10
18秒前
kim发布了新的文献求助10
19秒前
白头蝰发布了新的文献求助30
19秒前
研友_VZG7GZ应助huyang采纳,获得10
19秒前
慕青应助123采纳,获得10
20秒前
21秒前
月兮2013完成签到,获得积分10
23秒前
24秒前
香蕉子骞发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
kim完成签到,获得积分10
28秒前
Owen应助哒哒哒采纳,获得10
29秒前
思源应助公孙朝雨采纳,获得10
29秒前
29秒前
x1981完成签到,获得积分10
29秒前
30秒前
坚强香旋完成签到,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138860
求助须知:如何正确求助?哪些是违规求助? 2789795
关于积分的说明 7792655
捐赠科研通 2446147
什么是DOI,文献DOI怎么找? 1300890
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079