Enhancing the Performance of Photonic Sensor Using Machine-Learning Approach

符号 人工智能 算法 数学 计算机科学 算术
作者
Yogendra Swaroop Dwivedi,Rishav Singh,Anuj K. Sharma,Anuj K. Sharma
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2320-2327 被引量:11
标识
DOI:10.1109/jsen.2022.3225858
摘要

This article reports on the implementation of adequate machine-learning (ML) models on different datasets vis-a-vis fiber-optic plasmonic sensor devices. The variation of the sensor’s figure of merit (FOM) with light wavelength ( $\lambda $ ) and metal layer thickness ( ${d}_{m}$ ) is considered as a starting point and accordingly, the appropriate ML model is chosen. The FOM datasets were found to be consistent with the Gaussian process regressor (GPR) model. The application of GPR with finer resolution (0.001 nm) of $\lambda $ on the datasets led to enhanced magnitudes of the sensor’s FOM. The dataset (459 points) having nine different values of ${d}_{m}$ led to a predicted FOM of 6526.23 at $\lambda =1099.343$ nm. Furthermore, the dataset (714 points) having 13 different values of ${d}_{m}$ led to a predicted FOM value of 6356.98 at $\lambda =1099.345$ nm. These are promising results as far as the application of the sensor in biosensing is concerned. Furthermore, the chosen model is found to be highly consistent with the data in terms of trend matching, and the values of other evaluation parameters [e.g., ${R}^{\,{2}}$ and mean absolute error (MAE)] are found to be in considerably desirable ranges. This study clearly reveals that the selection of an appropriate ML model and its implementation on various datasets can lead to more efficient finalization of the sensor design with enhanced sensing performance. This process is critical before the actual experimental realization of the finalized sensor design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
欢喜的雁枫应助Ying采纳,获得20
1秒前
CRANE完成签到 ,获得积分10
2秒前
炙热逍遥完成签到 ,获得积分10
2秒前
wang完成签到,获得积分10
3秒前
wwwzy关注了科研通微信公众号
4秒前
南昌黑人发布了新的文献求助10
5秒前
Ava应助jby采纳,获得10
5秒前
yg发布了新的文献求助10
6秒前
bosco发布了新的文献求助10
7秒前
7秒前
朱珠完成签到,获得积分10
7秒前
立里完成签到,获得积分10
9秒前
12秒前
13秒前
英姑应助科研通管家采纳,获得30
13秒前
慕青应助科研通管家采纳,获得10
13秒前
敬老院N号应助科研通管家采纳,获得20
13秒前
李健应助科研通管家采纳,获得10
13秒前
JiegeSCI发布了新的文献求助10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
14秒前
LAlalal完成签到,获得积分10
14秒前
lilei完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
优美谷兰完成签到,获得积分10
17秒前
18秒前
wwwzy发布了新的文献求助10
18秒前
YMY发布了新的文献求助10
19秒前
19秒前
科研通AI2S应助zxvcbnm采纳,获得10
20秒前
机智寻雪完成签到 ,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135145
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775648
捐赠科研通 2441991
什么是DOI,文献DOI怎么找? 1298332
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600845