数据库扫描
计算机科学
聚类分析
数据挖掘
鉴定(生物学)
网络拓扑
自动化
特征向量
噪音(视频)
自编码
模式识别(心理学)
拓扑(电路)
人工智能
工程类
人工神经网络
相关聚类
CURE数据聚类算法
机械工程
植物
电气工程
图像(数学)
生物
操作系统
作者
Xiaowei Miao,Jing Yuan,Ming Yang,Zhujian Ou,Dongdong Huang,Yifeng Mao,Wangchun Liu,Yuwei Cao
标识
DOI:10.1109/icpsasia55496.2022.9949696
摘要
The mistakes in topology records of low voltage distribution network influence the economic operation of the power grid. However, most existing methods to detect the customers who do not match the records are not always reliable and can’t realize automatic identification. This paper proposes an identification method based on stacked autoencoder (SAE) and modified Density-Based Spatial Clustering of Applications with Noise (DBSCAN). SAE is applied to reduce the data dimensions and extract nonlinear feature vectors from voltage time series. The modified DBSCAN can adjust parameters adaptively and cluster the feature vectors to identify the customers with wrong transformer connectivity, which improves the automation management level in distribution network. Case studies on real datasets have verified that the proposed method has high identification accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI