已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Federated Deep Reinforcement Learning for Task Scheduling in Heterogeneous Autonomous Robotic System

强化学习 计算机科学 调度(生产过程) 人工智能 两级调度 动态优先级调度 分布式计算 公平份额计划 排队 作业车间调度 机器人学 机器人 固定优先级先发制人调度 单调速率调度 实时计算 地铁列车时刻表 数学优化 计算机网络 操作系统 数学
作者
Tai Manh Ho,Kim Khoa Nguyen,Mohamed Cheriet
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 528-540 被引量:14
标识
DOI:10.1109/tase.2022.3221352
摘要

Autonomous robotics play a central role in smart logistics where robots can replace or aid humans in all kinds of tasks, such as items picking, moving, and storing. In this paper, we investigate the problem of task scheduling in automated warehouses with heterogeneous autonomous robotic (HAR) systems. We formulate a long-term non-convex queueing control optimization problem to minimize the queue length of tasks to be processed in the warehouse. Traditional task scheduling solutions based on optimization approaches are inefficient in handling the stochastic nature of the goods/tasks flow and a large number of robots in the system due to their computational cost. We propose a deep reinforcement learning (DRL) based task scheduling algorithm that employs the proximal policy optimization (PPO) method to find an optimal task scheduling policy. Due to the heterogeneity of the system, we propose a proximal weighted federated learning-based algorithm for implementing a decentralized PPO algorithm that improves the performance of the distributed PPO agents that are deployed in the workstations at the geographically distributed warehouses. The simulation results demonstrate the performance improvement of our proposed algorithm compared to the existing methods. Note to Practitioners—Task scheduling for robotic swarms in smart warehouses is substantial for e-commerce. State-of-the-art solutions have focused on efficient task scheduling for homogeneous robotic systems using machine learning techniques implemented in the warehouse management systems (WMS). However, task scheduling for a heterogeneous autonomous robotic (HAR) system has not fully been investigated so far. This article provides a comprehensive task scheduling algorithm for HAR systems that leverages innovative deep reinforcement learning and federated learning techniques. The proposed algorithm can be deployed in the geographically distributed warehouses of an e-commerce company and easily integrated into the WMS to optimally control the operation of the HAR system with stochastic goods/tasks flows in the smart warehousing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助温暖的幼枫采纳,获得10
1秒前
1秒前
今昭发布了新的文献求助10
3秒前
3秒前
kilig完成签到,获得积分10
4秒前
九日橙完成签到 ,获得积分10
4秒前
zoelir完成签到,获得积分10
4秒前
苗条的静白完成签到,获得积分10
5秒前
英勇听兰完成签到 ,获得积分10
7秒前
7秒前
8秒前
从容芮完成签到,获得积分0
8秒前
9秒前
Percy完成签到 ,获得积分10
9秒前
11秒前
张青争发布了新的文献求助10
11秒前
欣欣完成签到 ,获得积分10
12秒前
13秒前
yuyiyi完成签到,获得积分10
17秒前
科研通AI5应助张青争采纳,获得10
24秒前
27秒前
27秒前
28秒前
zzzzzttt完成签到,获得积分10
29秒前
明天更好完成签到 ,获得积分10
30秒前
32秒前
32秒前
可爱的函函应助郑郑采纳,获得10
34秒前
34秒前
36秒前
37秒前
清森完成签到 ,获得积分10
38秒前
40秒前
周宾克完成签到 ,获得积分10
41秒前
木有完成签到 ,获得积分10
41秒前
瓦力发布了新的文献求助10
41秒前
忧郁的书苗完成签到,获得积分10
41秒前
懒羊羊大王完成签到 ,获得积分10
43秒前
Akim应助gaogao采纳,获得10
43秒前
QT_429完成签到 ,获得积分10
44秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516206
求助须知:如何正确求助?哪些是违规求助? 3098515
关于积分的说明 9239788
捐赠科研通 2793547
什么是DOI,文献DOI怎么找? 1533124
邀请新用户注册赠送积分活动 712561
科研通“疑难数据库(出版商)”最低求助积分说明 707359