亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Global and Local Surrogate-Assisted Genetic Programming Approach to Image Classification

替代模型 遗传程序设计 计算机科学 人工智能 机器学习 进化计算 健身景观 进化算法 适应度近似 数学优化 集合(抽象数据类型) 遗传算法 适应度函数 数学 人口 程序设计语言 人口学 社会学
作者
Qinglan Fan,Ying Bi,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tevc.2022.3214607
摘要

Genetic programming (GP) has achieved promising performance in image classification. However, GP-based methods usually require a long computation time for fitness evaluations, posing a challenge to real-world applications. Surrogate models can be efficiently computable approximations of expensive fitness evaluations. However, most existing surrogate methods are designed for evolutionary computation techniques with a vector-based representation consisting of numerical values, thus cannot be directly used for GP with a tree-based representation consisting of functions/operators. The variable sizes of GP trees further increase the difficulty of building the surrogate model for fitness approximations. To address these limitations, we propose a new surrogate-assisted GP approach including global and local surrogate models, which can accelerate the evolutionary learning process and achieve competitive classification performance simultaneously. The global surrogate model can assist GP in exploring the entire search space, while the local surrogate model can speed up convergence and further improve performance. Furthermore, a new surrogate training set is constructed to assist in establishing the relationship between the GP tree and its fitness, and effective surrogate models can be built accordingly. Experimental results on ten datasets of varying difficulty show that the new approach significantly reduces the computational cost of the GP-based method without sacrificing the classification accuracy. The comparisons with other state-of-the-art methods also demonstrate the effectiveness of the new approach. Further analysis reveals the significance of the global and local surrogates and the new surrogate training set on improving or maintaining the performance of the proposed approach while reducing the computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
axi完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
ddddddd完成签到 ,获得积分10
5秒前
鲁丁丁发布了新的文献求助10
6秒前
鲁丁丁完成签到,获得积分10
23秒前
38秒前
41秒前
45秒前
jerry完成签到,获得积分10
52秒前
小新完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
sunstar完成签到,获得积分10
1分钟前
1分钟前
悲凉的忆南完成签到,获得积分10
1分钟前
yxl完成签到,获得积分10
1分钟前
钟哈哈完成签到,获得积分10
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
lsc完成签到,获得积分10
1分钟前
1分钟前
小fei完成签到,获得积分10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
1分钟前
时尚身影完成签到,获得积分10
1分钟前
流苏完成签到,获得积分10
1分钟前
研友_ZAxxjn发布了新的文献求助20
1分钟前
流苏2完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
wangjun完成签到,获得积分10
2分钟前
2分钟前
Aroojshams完成签到,获得积分10
2分钟前
友好的巧凡完成签到,获得积分10
2分钟前
刘瑞吉完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
WANWAN发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418313
求助须知:如何正确求助?哪些是违规求助? 4534003
关于积分的说明 14142967
捐赠科研通 4450296
什么是DOI,文献DOI怎么找? 2441153
邀请新用户注册赠送积分活动 1432891
关于科研通互助平台的介绍 1410244