亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Global and Local Surrogate-Assisted Genetic Programming Approach to Image Classification

替代模型 遗传程序设计 计算机科学 人工智能 机器学习 进化计算 健身景观 进化算法 适应度近似 数学优化 集合(抽象数据类型) 遗传算法 适应度函数 数学 人口 程序设计语言 人口学 社会学
作者
Qinglan Fan,Ying Bi,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tevc.2022.3214607
摘要

Genetic programming (GP) has achieved promising performance in image classification. However, GP-based methods usually require a long computation time for fitness evaluations, posing a challenge to real-world applications. Surrogate models can be efficiently computable approximations of expensive fitness evaluations. However, most existing surrogate methods are designed for evolutionary computation techniques with a vector-based representation consisting of numerical values, thus cannot be directly used for GP with a tree-based representation consisting of functions/operators. The variable sizes of GP trees further increase the difficulty of building the surrogate model for fitness approximations. To address these limitations, we propose a new surrogate-assisted GP approach including global and local surrogate models, which can accelerate the evolutionary learning process and achieve competitive classification performance simultaneously. The global surrogate model can assist GP in exploring the entire search space, while the local surrogate model can speed up convergence and further improve performance. Furthermore, a new surrogate training set is constructed to assist in establishing the relationship between the GP tree and its fitness, and effective surrogate models can be built accordingly. Experimental results on ten datasets of varying difficulty show that the new approach significantly reduces the computational cost of the GP-based method without sacrificing the classification accuracy. The comparisons with other state-of-the-art methods also demonstrate the effectiveness of the new approach. Further analysis reveals the significance of the global and local surrogates and the new surrogate training set on improving or maintaining the performance of the proposed approach while reducing the computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
さくま完成签到,获得积分10
4秒前
liu应助YIN采纳,获得10
38秒前
1分钟前
BEGIN发布了新的文献求助10
1分钟前
行走完成签到,获得积分10
1分钟前
1分钟前
lly2021发布了新的文献求助10
1分钟前
gy完成签到,获得积分10
2分钟前
大个应助Desire采纳,获得10
2分钟前
2分钟前
Desire发布了新的文献求助10
2分钟前
深情安青应助天气真好采纳,获得10
2分钟前
3分钟前
3分钟前
晓晓完成签到,获得积分10
3分钟前
晓晓发布了新的文献求助10
3分钟前
inRe完成签到,获得积分10
3分钟前
3分钟前
活力的以寒完成签到 ,获得积分10
4分钟前
海洋岩土12138完成签到 ,获得积分10
5分钟前
研友_VZG7GZ应助研友_EZ1GJL采纳,获得10
5分钟前
will完成签到,获得积分10
5分钟前
5分钟前
研友_EZ1GJL发布了新的文献求助10
5分钟前
5分钟前
胖哥发布了新的文献求助10
5分钟前
6分钟前
Owen应助李小猫采纳,获得10
6分钟前
6分钟前
李小猫完成签到,获得积分10
6分钟前
领导范儿应助专注的芷蕾采纳,获得10
6分钟前
6分钟前
李小猫发布了新的文献求助10
6分钟前
Amberless完成签到,获得积分10
7分钟前
传奇3应助科研通管家采纳,获得10
7分钟前
Billy应助科研通管家采纳,获得30
7分钟前
7分钟前
无敌石墨烯完成签到 ,获得积分0
8分钟前
8分钟前
tutu完成签到,获得积分10
8分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294545
求助须知:如何正确求助?哪些是违规求助? 2930483
关于积分的说明 8446093
捐赠科研通 2602677
什么是DOI,文献DOI怎么找? 1420700
科研通“疑难数据库(出版商)”最低求助积分说明 660658
邀请新用户注册赠送积分活动 643433