A Global and Local Surrogate-Assisted Genetic Programming Approach to Image Classification

替代模型 遗传程序设计 计算机科学 人工智能 机器学习 进化计算 健身景观 进化算法 适应度近似 数学优化 集合(抽象数据类型) 遗传算法 适应度函数 数学 人口 程序设计语言 人口学 社会学
作者
Qinglan Fan,Ying Bi,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tevc.2022.3214607
摘要

Genetic programming (GP) has achieved promising performance in image classification. However, GP-based methods usually require a long computation time for fitness evaluations, posing a challenge to real-world applications. Surrogate models can be efficiently computable approximations of expensive fitness evaluations. However, most existing surrogate methods are designed for evolutionary computation techniques with a vector-based representation consisting of numerical values, thus cannot be directly used for GP with a tree-based representation consisting of functions/operators. The variable sizes of GP trees further increase the difficulty of building the surrogate model for fitness approximations. To address these limitations, we propose a new surrogate-assisted GP approach including global and local surrogate models, which can accelerate the evolutionary learning process and achieve competitive classification performance simultaneously. The global surrogate model can assist GP in exploring the entire search space, while the local surrogate model can speed up convergence and further improve performance. Furthermore, a new surrogate training set is constructed to assist in establishing the relationship between the GP tree and its fitness, and effective surrogate models can be built accordingly. Experimental results on ten datasets of varying difficulty show that the new approach significantly reduces the computational cost of the GP-based method without sacrificing the classification accuracy. The comparisons with other state-of-the-art methods also demonstrate the effectiveness of the new approach. Further analysis reveals the significance of the global and local surrogates and the new surrogate training set on improving or maintaining the performance of the proposed approach while reducing the computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助热情的海蓝采纳,获得10
刚刚
刚刚
一区迟早发完成签到,获得积分10
1秒前
小齐小齐发布了新的文献求助10
1秒前
Sylvia完成签到,获得积分10
1秒前
nanan完成签到,获得积分10
2秒前
蛋炒饭i完成签到,获得积分10
2秒前
李大刚完成签到 ,获得积分10
2秒前
星辉发布了新的文献求助10
2秒前
John_sdu完成签到,获得积分10
2秒前
2秒前
3秒前
emmm完成签到,获得积分10
3秒前
阿符家的骡完成签到,获得积分10
3秒前
tengfei完成签到 ,获得积分10
3秒前
万yt完成签到,获得积分10
4秒前
知性的友易完成签到,获得积分10
4秒前
Emma发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
小马甲应助Bellona采纳,获得10
4秒前
小林发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
4秒前
蔺瑾瑜完成签到,获得积分10
5秒前
5秒前
wen完成签到,获得积分10
5秒前
sophia发布了新的文献求助10
6秒前
kingkingmai完成签到 ,获得积分10
6秒前
十三应助默mo采纳,获得20
6秒前
6秒前
啦啦啦完成签到,获得积分10
6秒前
22222发布了新的文献求助30
6秒前
7秒前
chang完成签到,获得积分10
8秒前
Anhber应助科研通管家采纳,获得10
8秒前
jhzwc完成签到,获得积分10
8秒前
蔺瑾瑜发布了新的文献求助10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270142
求助须知:如何正确求助?哪些是违规求助? 4428386
关于积分的说明 13784159
捐赠科研通 4306181
什么是DOI,文献DOI怎么找? 2362976
邀请新用户注册赠送积分活动 1358684
关于科研通互助平台的介绍 1321524