A Global and Local Surrogate-Assisted Genetic Programming Approach to Image Classification

替代模型 遗传程序设计 计算机科学 人工智能 机器学习 进化计算 健身景观 进化算法 适应度近似 数学优化 集合(抽象数据类型) 遗传算法 适应度函数 数学 人口 程序设计语言 人口学 社会学
作者
Qinglan Fan,Ying Bi,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tevc.2022.3214607
摘要

Genetic programming (GP) has achieved promising performance in image classification. However, GP-based methods usually require a long computation time for fitness evaluations, posing a challenge to real-world applications. Surrogate models can be efficiently computable approximations of expensive fitness evaluations. However, most existing surrogate methods are designed for evolutionary computation techniques with a vector-based representation consisting of numerical values, thus cannot be directly used for GP with a tree-based representation consisting of functions/operators. The variable sizes of GP trees further increase the difficulty of building the surrogate model for fitness approximations. To address these limitations, we propose a new surrogate-assisted GP approach including global and local surrogate models, which can accelerate the evolutionary learning process and achieve competitive classification performance simultaneously. The global surrogate model can assist GP in exploring the entire search space, while the local surrogate model can speed up convergence and further improve performance. Furthermore, a new surrogate training set is constructed to assist in establishing the relationship between the GP tree and its fitness, and effective surrogate models can be built accordingly. Experimental results on ten datasets of varying difficulty show that the new approach significantly reduces the computational cost of the GP-based method without sacrificing the classification accuracy. The comparisons with other state-of-the-art methods also demonstrate the effectiveness of the new approach. Further analysis reveals the significance of the global and local surrogates and the new surrogate training set on improving or maintaining the performance of the proposed approach while reducing the computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wlx发布了新的文献求助10
1秒前
明若清完成签到,获得积分10
2秒前
嘎嘎的小羊完成签到,获得积分20
2秒前
Hello应助wlei采纳,获得10
2秒前
夏大雨发布了新的文献求助10
2秒前
pie应助yizhi猫采纳,获得10
3秒前
4秒前
哇哇哇发布了新的文献求助10
5秒前
6秒前
saf0852完成签到,获得积分10
6秒前
plant发布了新的文献求助10
7秒前
9秒前
zhouzhou完成签到,获得积分10
10秒前
10秒前
夏大雨完成签到,获得积分10
12秒前
苇一完成签到,获得积分10
12秒前
77发布了新的文献求助10
13秒前
14秒前
大模型应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
ccm应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
xxfsx应助科研通管家采纳,获得10
15秒前
xxfsx应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
xxfsx应助科研通管家采纳,获得10
15秒前
xxfsx应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
YChen应助科研通管家采纳,获得20
15秒前
顾矜应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288530
求助须知:如何正确求助?哪些是违规求助? 4440409
关于积分的说明 13824512
捐赠科研通 4322629
什么是DOI,文献DOI怎么找? 2372687
邀请新用户注册赠送积分活动 1368119
关于科研通互助平台的介绍 1331979