亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Global and Local Surrogate-Assisted Genetic Programming Approach to Image Classification

替代模型 遗传程序设计 计算机科学 人工智能 机器学习 进化计算 健身景观 进化算法 适应度近似 数学优化 集合(抽象数据类型) 遗传算法 适应度函数 数学 人口 人口学 社会学 程序设计语言
作者
Qinglan Fan,Ying Bi,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tevc.2022.3214607
摘要

Genetic programming (GP) has achieved promising performance in image classification. However, GP-based methods usually require a long computation time for fitness evaluations, posing a challenge to real-world applications. Surrogate models can be efficiently computable approximations of expensive fitness evaluations. However, most existing surrogate methods are designed for evolutionary computation techniques with a vector-based representation consisting of numerical values, thus cannot be directly used for GP with a tree-based representation consisting of functions/operators. The variable sizes of GP trees further increase the difficulty of building the surrogate model for fitness approximations. To address these limitations, we propose a new surrogate-assisted GP approach including global and local surrogate models, which can accelerate the evolutionary learning process and achieve competitive classification performance simultaneously. The global surrogate model can assist GP in exploring the entire search space, while the local surrogate model can speed up convergence and further improve performance. Furthermore, a new surrogate training set is constructed to assist in establishing the relationship between the GP tree and its fitness, and effective surrogate models can be built accordingly. Experimental results on ten datasets of varying difficulty show that the new approach significantly reduces the computational cost of the GP-based method without sacrificing the classification accuracy. The comparisons with other state-of-the-art methods also demonstrate the effectiveness of the new approach. Further analysis reveals the significance of the global and local surrogates and the new surrogate training set on improving or maintaining the performance of the proposed approach while reducing the computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只熊完成签到 ,获得积分10
2秒前
6秒前
6秒前
8秒前
paper完成签到,获得积分20
18秒前
25秒前
Marciu33发布了新的文献求助10
26秒前
zqq完成签到,获得积分0
31秒前
36秒前
43秒前
47秒前
50秒前
奋斗的小笼包完成签到 ,获得积分10
52秒前
54秒前
1分钟前
深情安青应助霸气的金鱼采纳,获得10
1分钟前
汉堡包应助paper采纳,获得50
1分钟前
霸气的金鱼完成签到,获得积分10
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
淡淡醉波wuliao完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
两袖清风完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
wynne313完成签到 ,获得积分10
2分钟前
2分钟前
田様应助chuzai采纳,获得10
3分钟前
3分钟前
科研花完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963174
求助须知:如何正确求助?哪些是违规求助? 3509081
关于积分的说明 11145035
捐赠科研通 3242176
什么是DOI,文献DOI怎么找? 1791759
邀请新用户注册赠送积分活动 873146
科研通“疑难数据库(出版商)”最低求助积分说明 803634