蛋白酵素
类胡萝卜素
抗菌剂
肽
抗菌肽
生物膜
体内
微生物学
化学
体外
生物化学
生物
细菌
酶
遗传学
生物技术
作者
Aaron P. Decker,Yajuan Su,Biswajit Mishra,Atul Kumar,Tamara Lushnikova,Jingwei Xie,Guangshun Wang
标识
DOI:10.1021/acs.molpharmaceut.2c00918
摘要
Peptide stability to proteases has been a major requirement for developing peptide therapeutics. This study investigates the effects of peptide stability on antimicrobial and antibiofilm activity under various conditions. For this purpose, two human cathelicidin-derived peptides differing in stability to proteases were utilized. While GF-17, a peptide derived from the major antimicrobial region of human LL-37, can be rapidly cleaved by proteases, the engineered peptide 17BIPHE2 is resistant to multiple proteases. In the standard antimicrobial susceptibility, killing kinetics, and membrane permeabilization assays conducted in vitro using planktonic bacteria, these two peptides displayed similar potency. The two peptides were also similarly active against methicillin-resistant Staphylococcus aureus (MRSA) USA300 prior to biofilm formation. However, 17BIPHE2 was superior to GF-17 in disrupting preformed biofilms probably due to both enhanced stability and slightly higher DNA binding capacity. In a wax moth model, 17BIPHE2 better protected insects from MRSA infection-caused death than GF-17, consistent with the slower degradation of 17BIPHE2 than GF-17. Here, peptide antimicrobial activity was found to be critical for in vivo efficacy. When incorporated in the nanofiber/microneedle delivery device, GF-17 and 17BIPHE2 displayed a similar effect in eliminating MRSA in murine chronic wounds, underscoring the advantage of nanofibers in protecting the peptide from degradation. Since nanoformulation can ease the requirement of peptide stability, it opens the door to a direct use of natural peptides or their cocktails for antimicrobial treatment, accelerating the search of effective antibiofilm peptides to treat chronic wounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI