红边
叶面积指数
增强植被指数
光谱指数
数学
单变量
叶绿素
多元统计
植被(病理学)
遥感
冬小麦
归一化差异植被指数
统计
植被指数
植物
谱线
高光谱成像
农学
物理
地理
生物
病理
医学
天文
作者
Xiaoxuan Wang,Guosheng Cai,Xiaoping Lu,Zenan Yang,Xiangjun Zhang,Qinggang Zhang
出处
期刊:Sustainability
[MDPI AG]
日期:2022-11-29
卷期号:14 (23): 15875-15875
被引量:10
摘要
Leaf area index (LAI) is an important parameter that determines the growth status of winter wheat and impacts the ecological and physical processes of plants in ecosystems. The problem of spectral saturation of winter wheat LAI at the booting stage was easily caused by the inversion of the univariate red-edge spectral vegetation index constructed by the red-edge band. In this paper, a new method that the univariate red-edge spectral vegetation index constructed in the red-edge band is used to invert the spectral saturation of the winter wheat LAI. The multivariable red-edge spectral vegetation index is used to invert the winter wheat LAI. This method can effectively delay the phenomenon of spectral saturation and improve the inversion precision. In this study, the Sentinel-2 data were used to invert the winter wheat LAI. An univariate and multivariate red-edge spectral vegetation index regression model was constructed based on the Red-edge Normalized Difference Spectral Indices 1 (NDSI1), Red-edge Normalized Difference Spectral Indices 2 (NDSI2), Red-edge Normalized Difference Spectral Indices 3 (NDSI3), Modified Chlorophyll Absorption Ratio Index (MCARI), MERIS Terrestrial Chlorophyll Index (MTCI), Transformed Chlorophyll Absorption in Reflectance Index (TCARI), and Transformed Chlorophyll Absorption in Reflectance Index/the optimized soil adjusted vegetation index (TCARI/OSAVI). Based on the correlation coefficient, the coefficient of determination (R2), the root mean square error (RMSE) and noise equivalent value (NE), the best model was selected and verified to generate an inverted map. The results showed that the multivariable red-edge spectral vegetation index of NDSI1 + NDSI2 + NDSI3 + TCARI/OSAVI + MCARI + MTCI + TCARI was the best model for inverting the winter wheat LAI. The R2, the RMSE and the NE values were all satisfied the requirements of the inversion precision (R2 = 0.8372/0.8818, RMSE = 0.2518/0.1985, NE = 5/5). In summary, this method can be used to judge the growth of winter wheat and provide an accurate basis for monitoring crop growth.
科研通智能强力驱动
Strongly Powered by AbleSci AI