已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Role of Oxidative Stress and Inflammation in Insomnia Sleep Disorder and Cardiovascular Diseases: Herbal Antioxidants and Anti-inflammatory Coupled with Insomnia Detection using Machine Learning

氧化应激 失眠症 医学 多导睡眠图 炎症 药理学 生物信息学 精神科 内科学 生物 脑电图
作者
Md Belal Bin Heyat,Dakun Lai,Kaishun Wu,Faijan Akhtar,Arshiya Sultana,Saifullah Tumrani,Bibi Nushrina Teelhawod,Rashid Abbasi,Mohammad Amjad Kamal,Abdullah Y. Muaad
出处
期刊:Current Pharmaceutical Design [Bentham Science]
卷期号:28 (45): 3618-3636 被引量:26
标识
DOI:10.2174/1381612829666221201161636
摘要

Abstract: Insomnia is well-known as trouble in sleeping and enormously influences human life due to the shortage of sleep. Reactive Oxygen Species (ROS) accrue in neurons during the waking state, and sleep has a defensive role against oxidative damage and dissipates ROS in the brain. In contrast, insomnia is the source of inequity between ROS generation and removal by an endogenous antioxidant defense system. The relationship between insomnia, depression, and anxiety disorders damages the cardiovascular systems' immune mechanisms and functions. Traditionally, polysomnography is used in the diagnosis of insomnia. This technique is complex, with a long time overhead. In this work, we have proposed a novel machine learning-based automatic detection system using the R-R intervals extracted from a single-lead electrocardiograph (ECG). Additionally, we aimed to explore the role of oxidative stress and inflammation in sleeping disorders and cardiovascular diseases, antioxidants’ effects, and the psychopharmacological effect of herbal medicine. This work has been carried out in steps, which include collecting the ECG signal for normal and insomnia subjects, analyzing the signal, and finally, automatic classification. We used two approaches, including subjects (normal and insomnia), two sleep stages, i.e., wake and rapid eye movement, and three Machine Learning (ML)-based classifiers to complete the classification. A total number of 3000 ECG segments were collected from 18 subjects. Furthermore, using the theranostics approach, the role of mitochondrial dysfunction causing oxidative stress and inflammatory response in insomnia and cardiovascular diseases was explored. The data from various databases on the mechanism of action of different herbal medicines in insomnia and cardiovascular diseases with antioxidant and antidepressant activities were also retrieved. Random Forest (RF) classifier has shown the highest accuracy (subjects: 87.10% and sleep stage: 88.30%) compared to the Decision Tree (DT) and Support Vector Machine (SVM). The results revealed that the suggested method could perform well in classifying the subjects and sleep stages. Additionally, a random forest machine learning-based classifier could be helpful in the clinical discovery of sleep complications, including insomnia. The evidence retrieved from the databases showed that herbal medicine contains numerous phytochemical bioactives and has multimodal cellular mechanisms of action, viz., antioxidant, anti-inflammatory, vasorelaxant, detoxifier, antidepressant, anxiolytic, and cell-rejuvenator properties. Other herbal medicines have a GABA-A receptor agonist effect. Hence, we recommend that the theranostics approach has potential and can be adopted for future research to improve the quality of life of humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助adinike采纳,获得10
1秒前
physicalproblem应助呆萌念梦采纳,获得10
1秒前
ww发布了新的文献求助10
3秒前
奔跑的神灯完成签到 ,获得积分10
4秒前
7秒前
Wzx完成签到 ,获得积分10
7秒前
hhh完成签到,获得积分20
9秒前
无情胡萝卜完成签到,获得积分10
10秒前
12秒前
13秒前
adinike发布了新的文献求助10
17秒前
羽羽完成签到 ,获得积分10
17秒前
暴风城第一死骑完成签到,获得积分10
18秒前
19秒前
20秒前
ww发布了新的文献求助10
22秒前
23秒前
adinike完成签到,获得积分10
24秒前
25秒前
26秒前
26秒前
29秒前
pct发布了新的文献求助10
29秒前
调研昵称发布了新的文献求助10
30秒前
佳佳发布了新的文献求助30
30秒前
31秒前
杨哈哈发布了新的文献求助10
32秒前
36秒前
37秒前
无名完成签到 ,获得积分10
38秒前
40秒前
41秒前
42秒前
43秒前
yanxuhuan完成签到 ,获得积分10
45秒前
yarkye完成签到,获得积分10
46秒前
47秒前
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
我是老大应助科研通管家采纳,获得10
50秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314278
求助须知:如何正确求助?哪些是违规求助? 2946569
关于积分的说明 8530780
捐赠科研通 2622286
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838