重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

The energetic and allosteric landscape for KRAS inhibition

变构调节 计算生物学 变构酶 克拉斯 效应器 生物 蛋白质-蛋白质相互作用 突变体 功能(生物学) 突变 遗传学 细胞生物学 基因 受体
作者
Chenchun Weng,André J. Faure,Ben Lehner
标识
DOI:10.1101/2022.12.06.519122
摘要

Abstract Thousands of proteins have now been genetically-validated as therapeutic targets in hundreds of human diseases. However, very few have actually been successfully targeted and many are considered ‘undruggable’. This is particularly true for proteins that function via protein-protein interactions: direct inhibition of binding interfaces is difficult, requiring the identification of allosteric sites. However, most proteins have no known allosteric sites and a comprehensive allosteric map does not exist for any protein. Here we address this shortcoming by charting multiple global atlases of inhibitory allosteric communication in KRAS, a protein mutated in 1 in 10 human cancers. We quantified the impact of >26,000 mutations on the folding of KRAS and its binding to six interaction partners. Genetic interactions in double mutants allowed us to perform biophysical measurements at scale, inferring >22,000 causal free energy changes, a similar number of measurements as the total made for proteins to date. These energy landscapes quantify how mutations tune the binding specificity of a signalling protein and map the inhibitory allosteric sites for an important therapeutic target. Allosteric propagation is particularly effective across the central beta sheet of KRAS and multiple surface pockets are genetically-validated as allosterically active, including a distal pocket in the C-terminal lobe of the protein. Allosteric mutations typically inhibit binding to all tested effectors but they can also change the binding specificity, revealing the regulatory, evolutionary and therapeutic potential to tune pathway activation. Using the approach described here it should be possible to rapidly and comprehensively identify allosteric target sites in many important proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dylan0113完成签到 ,获得积分10
刚刚
hj完成签到 ,获得积分10
刚刚
安白枫发布了新的文献求助10
刚刚
dandan完成签到,获得积分10
1秒前
灯箱发布了新的文献求助10
1秒前
py完成签到,获得积分20
1秒前
che发布了新的文献求助10
1秒前
1秒前
JamesPei应助清秀忆枫采纳,获得10
2秒前
田様应助刘轩雨采纳,获得10
2秒前
高高翅膀应助ZZJ采纳,获得10
2秒前
xiao142完成签到,获得积分10
2秒前
微笑幻波发布了新的文献求助10
2秒前
王旭发布了新的文献求助10
3秒前
QQ发布了新的文献求助10
3秒前
小蜗妞妞完成签到,获得积分10
4秒前
5秒前
芬里尔发布了新的文献求助10
5秒前
nannan完成签到,获得积分10
6秒前
酷酷的哈密瓜完成签到,获得积分20
6秒前
Ivan发布了新的文献求助10
7秒前
7秒前
8秒前
脆脆鲨发布了新的文献求助10
8秒前
8秒前
8秒前
安白枫完成签到,获得积分10
9秒前
Vanilla应助瘦瘦的语梦采纳,获得20
10秒前
酷酷蜗牛完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
黑神白了发布了新的文献求助10
11秒前
12秒前
杨12发布了新的文献求助10
13秒前
小二郎应助陶醉的鹤轩采纳,获得10
14秒前
XF完成签到,获得积分10
14秒前
Azure完成签到,获得积分10
14秒前
Yeah发布了新的文献求助20
15秒前
Orange应助zjtttt采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467477
求助须知:如何正确求助?哪些是违规求助? 4571182
关于积分的说明 14329082
捐赠科研通 4497783
什么是DOI,文献DOI怎么找? 2464081
邀请新用户注册赠送积分活动 1452935
关于科研通互助平台的介绍 1427654