Light field angular super-resolution based on intrinsic and geometric information

光场 极线几何 角度分辨率(图形绘制) 计算机视觉 计算机科学 人工智能 领域(数学) 图像分辨率 卷积(计算机科学) 编码 保险丝(电气) 光学 物理 数学 人工神经网络 图像(数学) 生物化学 化学 组合数学 纯数学 基因 量子力学
作者
Lingyu Wang,Lifei Ren,Xiaoyao Wei,Jiangxin Yang,Yuchen Cao,Yanpeng Cao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:270: 110553-110553 被引量:1
标识
DOI:10.1016/j.knosys.2023.110553
摘要

Light field imaging can encode abundant scene information, including the intensity and direction of light rays, into 4D light field images. However, the limited number of sensors in commercial light field cameras leads to a trade-off between spatial and angular resolutions. In this paper, an angular super-resolution framework is proposed to synthesize new views and overcome hardware restrictions. First, light field intrinsic feature convolution is proposed to extract intrinsic information, i.e., scene content, complete view correlations, and epipolar structures. Consequently, spatial, angular, and cross-domain information can be preserved in the extracted features. Second, the spatial–angular and depth streams are proposed based on the light field intrinsic feature convolution to synthesize high angular resolution light fields. The spatial–angular stream utilizes the light field intrinsic information to improve the angular resolution, whereas the depth stream disentangles the geometric information from the extracted light field intrinsic features, which is used to warp the given sub-aperture images to the new view positions. Both streams can synthesize high-quality intermediate results, where the intrinsic and geometric information are utilized separately. Finally, a confidence-based stream fusion module is proposed to fuse the outputs from the two streams, achieving the joint employment of light field intrinsic and geometric information and solving the problem of insufficient information exploration in the current methods. We conduct a series of experiments to validate the effectiveness of each component in the framework and demonstrate that our method can achieve state-of-the-art performance in various scenes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SciGPT应助Schmidt采纳,获得10
1秒前
英姑应助外向跳跳糖采纳,获得10
2秒前
可爱的函函应助勿扰采纳,获得10
2秒前
彭于晏应助勿扰采纳,获得10
2秒前
Plateau发布了新的文献求助10
2秒前
xiaoyao发布了新的文献求助10
2秒前
rocket完成签到,获得积分10
3秒前
无语的千儿完成签到,获得积分10
3秒前
李团长完成签到 ,获得积分10
4秒前
Wcy发布了新的文献求助10
4秒前
4秒前
倒霉的芒果完成签到 ,获得积分10
5秒前
SciGPT应助semigreen采纳,获得10
5秒前
杨洋发布了新的文献求助10
5秒前
6秒前
Komorebi发布了新的文献求助10
6秒前
6秒前
落后的盼秋完成签到,获得积分10
6秒前
柏林寒冬应助拾起采纳,获得10
7秒前
八一发布了新的文献求助10
7秒前
7秒前
思源应助王大力采纳,获得10
7秒前
7秒前
7秒前
Evander发布了新的文献求助10
7秒前
8秒前
ccm应助geold采纳,获得10
8秒前
FashionBoy应助阿撕匹林采纳,获得10
9秒前
Zx_1993应助尚白swqd采纳,获得10
9秒前
赵颖完成签到 ,获得积分10
9秒前
9秒前
gb完成签到 ,获得积分10
10秒前
遨游的人完成签到,获得积分10
10秒前
活力的念蕾完成签到,获得积分10
11秒前
Criminology34应助镇痛蚊子采纳,获得10
11秒前
11秒前
freya发布了新的文献求助80
11秒前
寻上发布了新的文献求助10
11秒前
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553