Integration Transformer for Ground-based Cloud Image Segmentation

计算机科学 分割 卷积神经网络 变压器 人工智能 编码器 云计算 基本事实 图像分割 深度学习 模式识别(心理学) 物理 量子力学 电压 操作系统
作者
Shuang Liu,Jiafeng Zhang,Zhong Zhang,Xiaozhong Cao,T.S. Durrani
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2023.3265384
摘要

Recently, convolutional neural network (CNN) dominates the ground-based cloud image segmentation task, but disregards the learning of long-range dependencies due to the limited size of filters. Although Transformer-based methods could overcome this limitation, they only learn long-range dependencies at a single scale, hence failing to capture multi-scale information of cloud image. The multi-scale information is beneficial to ground-based cloud image segmentation, because the features from small scales tend to extract detailed information while features from large scales have the ability to learn global information. In this paper, we propose a novel deep network named Integration Transformer (InTransformer), which builds long-range dependencies from different scales. To this end, we propose the Hybrid Multi-head Transformer Block (HMTB) to learn multi-scale long-range dependencies, and hybridize CNN and HMTB as the encoder at different scales. The proposed InTransformer hybridizes CNN and Transformer as the encoder to extract multi-scale representations, which learns both local information and long-range dependencies with different scales. Meanwhile, in order to fuse the patch tokens with different scales, we propose Mutual Cross-Attention Module (MCAM) for the decoder of InTransformer which could adequately interact multi-scale patch tokens in a bidirectional way. We have conducted a series of experiments on large ground-based cloud detection database TLCDD and SWIMSEG. The experimental results show that the performance of our method outperforms other methods, proving the effectiveness of the proposed InTransformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaoleeyu发布了新的文献求助10
2秒前
2秒前
科研通AI5应助周周喝粥粥采纳,获得10
3秒前
SSY完成签到,获得积分10
3秒前
肖遥发布了新的文献求助10
4秒前
魔幻海豚发布了新的文献求助10
4秒前
misong完成签到,获得积分10
5秒前
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
挖掘机应助科研通管家采纳,获得200
6秒前
搞怪书兰完成签到,获得积分10
6秒前
FashionBoy应助科研通管家采纳,获得30
6秒前
思源应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得30
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
fifteen应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
jie酱拌面应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得50
7秒前
blink_gmx完成签到,获得积分10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
7秒前
搜集达人应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
孙孙发布了新的文献求助10
8秒前
FashionBoy应助科研通管家采纳,获得30
8秒前
8秒前
沙拉酱发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546756
求助须知:如何正确求助?哪些是违规求助? 3977890
关于积分的说明 12317527
捐赠科研通 3646280
什么是DOI,文献DOI怎么找? 2008092
邀请新用户注册赠送积分活动 1043696
科研通“疑难数据库(出版商)”最低求助积分说明 932377