Integration Transformer for Ground-based Cloud Image Segmentation

计算机科学 分割 卷积神经网络 变压器 人工智能 编码器 云计算 基本事实 图像分割 深度学习 模式识别(心理学) 量子力学 操作系统 物理 电压
作者
Shuang Liu,Jiafeng Zhang,Zhong Zhang,Xiaozhong Cao,T.S. Durrani
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2023.3265384
摘要

Recently, convolutional neural network (CNN) dominates the ground-based cloud image segmentation task, but disregards the learning of long-range dependencies due to the limited size of filters. Although Transformer-based methods could overcome this limitation, they only learn long-range dependencies at a single scale, hence failing to capture multi-scale information of cloud image. The multi-scale information is beneficial to ground-based cloud image segmentation, because the features from small scales tend to extract detailed information while features from large scales have the ability to learn global information. In this paper, we propose a novel deep network named Integration Transformer (InTransformer), which builds long-range dependencies from different scales. To this end, we propose the Hybrid Multi-head Transformer Block (HMTB) to learn multi-scale long-range dependencies, and hybridize CNN and HMTB as the encoder at different scales. The proposed InTransformer hybridizes CNN and Transformer as the encoder to extract multi-scale representations, which learns both local information and long-range dependencies with different scales. Meanwhile, in order to fuse the patch tokens with different scales, we propose Mutual Cross-Attention Module (MCAM) for the decoder of InTransformer which could adequately interact multi-scale patch tokens in a bidirectional way. We have conducted a series of experiments on large ground-based cloud detection database TLCDD and SWIMSEG. The experimental results show that the performance of our method outperforms other methods, proving the effectiveness of the proposed InTransformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助飞快的诗槐采纳,获得10
刚刚
小王同学完成签到 ,获得积分10
刚刚
刚刚
完美世界应助JMrider采纳,获得10
1秒前
laola发布了新的文献求助10
1秒前
Mine发布了新的文献求助10
1秒前
柴yuki完成签到 ,获得积分10
2秒前
贪玩丸子完成签到,获得积分10
2秒前
狗窝里的猫yan完成签到,获得积分10
2秒前
3秒前
没有蛀牙完成签到,获得积分10
4秒前
4秒前
酶没美镁完成签到,获得积分10
5秒前
5秒前
Lwxbb完成签到,获得积分10
6秒前
科目三应助搬砖人采纳,获得200
6秒前
安然发布了新的文献求助10
6秒前
SweetyANN完成签到,获得积分10
7秒前
7秒前
勤劳溪灵完成签到,获得积分10
7秒前
7秒前
夏姬宁静发布了新的文献求助10
8秒前
情怀应助无所吊谓采纳,获得10
8秒前
Active完成签到,获得积分10
8秒前
scholars完成签到,获得积分10
9秒前
ohno耶耶耶发布了新的文献求助10
10秒前
SweetyANN发布了新的文献求助10
10秒前
10秒前
niceweiwei发布了新的文献求助10
11秒前
ZG发布了新的文献求助10
11秒前
11秒前
迷路安雁完成签到,获得积分10
12秒前
12秒前
yuery完成签到,获得积分10
12秒前
牛牛牛完成签到,获得积分10
12秒前
A1len完成签到,获得积分10
13秒前
爱写论文的小胡完成签到,获得积分10
13秒前
拉长的问晴完成签到,获得积分10
14秒前
Yukikig完成签到,获得积分10
14秒前
哈哈哈哈哈完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874