Integration Transformer for Ground-based Cloud Image Segmentation

计算机科学 分割 卷积神经网络 变压器 人工智能 编码器 云计算 基本事实 图像分割 深度学习 模式识别(心理学) 物理 量子力学 电压 操作系统
作者
Shuang Liu,Jiafeng Zhang,Zhong Zhang,Xiaozhong Cao,T.S. Durrani
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2023.3265384
摘要

Recently, convolutional neural network (CNN) dominates the ground-based cloud image segmentation task, but disregards the learning of long-range dependencies due to the limited size of filters. Although Transformer-based methods could overcome this limitation, they only learn long-range dependencies at a single scale, hence failing to capture multi-scale information of cloud image. The multi-scale information is beneficial to ground-based cloud image segmentation, because the features from small scales tend to extract detailed information while features from large scales have the ability to learn global information. In this paper, we propose a novel deep network named Integration Transformer (InTransformer), which builds long-range dependencies from different scales. To this end, we propose the Hybrid Multi-head Transformer Block (HMTB) to learn multi-scale long-range dependencies, and hybridize CNN and HMTB as the encoder at different scales. The proposed InTransformer hybridizes CNN and Transformer as the encoder to extract multi-scale representations, which learns both local information and long-range dependencies with different scales. Meanwhile, in order to fuse the patch tokens with different scales, we propose Mutual Cross-Attention Module (MCAM) for the decoder of InTransformer which could adequately interact multi-scale patch tokens in a bidirectional way. We have conducted a series of experiments on large ground-based cloud detection database TLCDD and SWIMSEG. The experimental results show that the performance of our method outperforms other methods, proving the effectiveness of the proposed InTransformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_n0DWDn完成签到,获得积分10
1秒前
wxpz完成签到,获得积分10
1秒前
123应助余凉采纳,获得40
1秒前
2秒前
guo完成签到,获得积分10
4秒前
ding应助Ywffffff采纳,获得10
4秒前
彳亍完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
小模样子完成签到,获得积分20
7秒前
高兴白开水完成签到,获得积分10
10秒前
angel发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
chenchenchen发布了新的文献求助10
12秒前
yatou5651应助super采纳,获得30
13秒前
13秒前
14秒前
Ywffffff发布了新的文献求助10
16秒前
智慧金刚发布了新的文献求助10
17秒前
huangpeihao发布了新的文献求助10
17秒前
聪明诗槐完成签到,获得积分10
17秒前
给钱谢谢发布了新的文献求助10
18秒前
云里完成签到,获得积分10
19秒前
麻花发布了新的文献求助10
19秒前
21秒前
抱小熊睡觉应助太阳采纳,获得10
21秒前
木叶_卡卡西完成签到,获得积分10
23秒前
小蘑菇应助文献求助采纳,获得30
23秒前
23秒前
chenchenchen发布了新的文献求助10
23秒前
23秒前
Akim应助Jiang采纳,获得10
24秒前
Lucas应助wzhang采纳,获得10
25秒前
26秒前
李爱国应助积极的千雁采纳,获得30
26秒前
Mewo发布了新的文献求助10
26秒前
羡三岁应助xiaobai采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309599
求助须知:如何正确求助?哪些是违规求助? 2942884
关于积分的说明 8511456
捐赠科研通 2617981
什么是DOI,文献DOI怎么找? 1430741
科研通“疑难数据库(出版商)”最低求助积分说明 664212
邀请新用户注册赠送积分活动 649424