亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract 5436: Developing artificial intelligence algorithms to predict response to neoadjuvant chemotherapy in HER2-positive breast cancer

肿瘤微环境 免疫组织化学 乳腺癌 肿瘤浸润淋巴细胞 免疫系统 医学 多路复用 数字化病理学 间质细胞 H&E染色 淋巴结 病理 CD8型 癌症 癌症研究 生物 免疫学 内科学 生物信息学
作者
Zhi Huang,Anil V. Parwani,Kun Huang,Zaibo Li
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (7_Supplement): 5436-5436 被引量:1
标识
DOI:10.1158/1538-7445.am2023-5436
摘要

Abstract Increasing implementation of whole slide image (WSI) and advances in computing capacity enable the use of artificial intelligence (AI) in pathology, such as quantification of biomarkers, aids in diagnosis and detection of lymph node metastasis. However, predicting therapy response in cancer patients from pre-treatment histopathologic images remains a challenging task, limited by poor understanding of tumor immune microenvironment. In this study, we aimed to develop AI models using multi-source histopathologic images to predict neoadjuvant chemotherapy (NAC) response in HER2-positive (HER2+) breast cancers. First, pretreatment tumor tissues were stained with Hematoxylin and Eosin (H&E) and multiplex immunohistochemistry (IHC) including tumor immune microenvironment markers (PD-L1: immune checkpoint protein; CD8: marker for cytotoxic T-cells; and CD163: marker for type 2 macrophages). Next, we developed an AI-based pipeline to automatically extract histopathologic features from H&E and multiplex IHC WSIs. The pipeline included: A) H&E tissue segmentation based on DeepLabV3 model to generate stroma, tumor, and lymphocyte-rich regions. B) IHC marker segmentation to segment CD8, CD163, and PD-L1 stained cells. C) H&E and IHC non-rigid registration to match H&E and IHC images since they were stained from different levels of tissue. D) Image-based registration and segmentation histopathologic feature construction. A total of 36 histopathological features were constructed to represent tumor immune microenvironment characteristics such as ratios of PD-L1, CD8 and CD163 in tumoral, stromal or lymphocyte-rich regions. They were used to train machine learning (ML) models to predict NAC response in a training dataset with 62 HER2+ breast cancers (38 with complete and 24 with incomplete response). The ML model using logistic regression demonstrated the best performance with an area under curve (AUC) of 0.8975. We also tested ML models using pathologists-derived histopathologic features, but the best performed model showed an AUC of 0.7880. Finally, the developed logistic regression ML model was tested on an external validation dataset with 20 HER2+ breast cancers (10 with complete and 10 with incomplete response) and yielded an AUC of 0.9005. In summary, we described an automatic, accurate and interpretable AI-based pipeline to extract histopathologic features from H&E and IHC WSIs and then used these features to develop machine learning model to accurately predict NAC response in HER2+ breast cancers. The ML model using AI-based extracted features outperformed the model using features manually generated by pathologists. Citation Format: Zhi Huang, Anil V. Parwani, Kun Huang, Zaibo Li. Developing artificial intelligence algorithms to predict response to neoadjuvant chemotherapy in HER2-positive breast cancer. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5436.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Priscilla采纳,获得10
2秒前
10秒前
Priscilla发布了新的文献求助10
16秒前
21秒前
xiaoguo发布了新的文献求助10
26秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
xiaoguo完成签到,获得积分10
39秒前
顾矜应助junhan采纳,获得80
49秒前
59秒前
junhan发布了新的文献求助80
1分钟前
zcbb完成签到,获得积分10
1分钟前
2分钟前
2分钟前
A章发布了新的文献求助10
2分钟前
A章完成签到,获得积分10
2分钟前
天天快乐应助火鸡味锅巴采纳,获得10
3分钟前
3分钟前
3分钟前
彭于晏应助科研通管家采纳,获得10
4分钟前
5分钟前
科研肥料完成签到,获得积分10
6分钟前
8分钟前
wodetaiyangLLL完成签到 ,获得积分10
8分钟前
Qin发布了新的文献求助10
8分钟前
小脚丫完成签到 ,获得积分10
8分钟前
iShine完成签到 ,获得积分10
9分钟前
橙色小瓶子完成签到,获得积分10
9分钟前
科研通AI5应助坚强的霆采纳,获得10
9分钟前
fang完成签到,获得积分10
9分钟前
bkagyin应助天真咖啡豆采纳,获得10
10分钟前
脑洞疼应助袁筱筱筱筱采纳,获得10
10分钟前
11分钟前
11分钟前
11分钟前
11分钟前
袁筱筱筱筱完成签到,获得积分10
11分钟前
11分钟前
边缘完成签到,获得积分10
12分钟前
小顺发布了新的文献求助10
12分钟前
边缘发布了新的文献求助10
12分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590762
求助须知:如何正确求助?哪些是违规求助? 3159139
关于积分的说明 9521999
捐赠科研通 2862034
什么是DOI,文献DOI怎么找? 1572925
邀请新用户注册赠送积分活动 738272
科研通“疑难数据库(出版商)”最低求助积分说明 722751