Efficient Calculation of Triangle Centrality in Big Data Networks
中心性
计算机科学
大数据
理论计算机科学
数据挖掘
数学
组合数学
作者
Wali Mohammad Abdullah,David Awosoga,Shahadat Hossain
标识
DOI:10.1109/hpec55821.2022.9926324
摘要
The notion of "centrality" within graph analytics has led to the creation of well-known metrics such as Google's Page Rank [1], which is an extension of eigenvector centrality [2]. Triangle centrality is a related metric [3] that utilizes the presence of triangles, which play an important role in network analysis, to quantitatively determine the relative "importance" of a node in a network. Efficiently counting and enumerating these triangles are a major backbone to understanding network characteristics, and linear algebraic methods have utilized the correspondence between sparse adjacency matrices and graphs to perform such calculations, with sparse matrix-matrix multiplication as the main computational kernel. In this paper, we use an intersection representation of graph data implemented as a sparse matrix, and engineer an algorithm to compute the triangle centrality of each vertex within a graph. The main computational task of calculating these sparse matrix-vector products is carefully crafted by employing compressed vectors as accumulators. As with other state-of-the-art algorithms [4], our method avoids redundant work by counting and enumerating each triangle exactly once. We present results from extensive computational experiments on large-scale real-world and synthetic graph in-stances that demonstrate good scalability of our method. We also present a shared memory parallel implementation of our algorithm.