Efficient Calculation of Triangle Centrality in Big Data Networks

中心性 计算机科学 大数据 理论计算机科学 数据挖掘 数学 组合数学
作者
Wali Mohammad Abdullah,David Awosoga,Shahadat Hossain
标识
DOI:10.1109/hpec55821.2022.9926324
摘要

The notion of "centrality" within graph analytics has led to the creation of well-known metrics such as Google's Page Rank [1], which is an extension of eigenvector centrality [2]. Triangle centrality is a related metric [3] that utilizes the presence of triangles, which play an important role in network analysis, to quantitatively determine the relative "importance" of a node in a network. Efficiently counting and enumerating these triangles are a major backbone to understanding network characteristics, and linear algebraic methods have utilized the correspondence between sparse adjacency matrices and graphs to perform such calculations, with sparse matrix-matrix multiplication as the main computational kernel. In this paper, we use an intersection representation of graph data implemented as a sparse matrix, and engineer an algorithm to compute the triangle centrality of each vertex within a graph. The main computational task of calculating these sparse matrix-vector products is carefully crafted by employing compressed vectors as accumulators. As with other state-of-the-art algorithms [4], our method avoids redundant work by counting and enumerating each triangle exactly once. We present results from extensive computational experiments on large-scale real-world and synthetic graph in-stances that demonstrate good scalability of our method. We also present a shared memory parallel implementation of our algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wqty关注了科研通微信公众号
刚刚
2秒前
大豹子发布了新的文献求助150
4秒前
CodeCraft应助wangdong采纳,获得10
5秒前
疯狂加载ing完成签到,获得积分0
7秒前
7秒前
baner发布了新的文献求助10
8秒前
1816013153发布了新的文献求助10
9秒前
科目三应助ZhouQixing采纳,获得10
10秒前
12秒前
英俊的铭应助疯狂加载ing采纳,获得10
13秒前
13秒前
奥沙利楠完成签到,获得积分10
15秒前
15秒前
hanli完成签到,获得积分20
15秒前
钰宁完成签到,获得积分10
15秒前
打打应助Steven采纳,获得10
18秒前
19秒前
66666发布了新的文献求助10
20秒前
斯文败类应助云水雾心采纳,获得10
21秒前
hanli发布了新的文献求助10
23秒前
华仔应助虚心碧采纳,获得10
23秒前
脑洞疼应助大豹子采纳,获得10
24秒前
25秒前
领导范儿应助细腻的深白采纳,获得10
26秒前
NEW发布了新的文献求助10
29秒前
31秒前
32秒前
sssshhh发布了新的文献求助10
34秒前
35秒前
ZhouQixing发布了新的文献求助10
36秒前
虚心碧发布了新的文献求助10
39秒前
不饱和环二酮完成签到,获得积分10
39秒前
43秒前
大豹子发布了新的文献求助10
46秒前
虚心碧完成签到,获得积分10
46秒前
GTRK完成签到 ,获得积分10
47秒前
49秒前
把秘密当成玩笑完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557972
求助须知:如何正确求助?哪些是违规求助? 4642937
关于积分的说明 14669867
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619