超级电容器
介孔材料
材料科学
重量分析
比表面积
碳纤维
电容
化学工程
多孔性
碳化物衍生碳
微型多孔材料
生物量(生态学)
电极
复合材料
化学
有机化学
碳纳米纤维
碳纳米管
催化作用
物理化学
工程类
地质学
海洋学
复合数
作者
Yan‐Bo Wang,Yiqing Chen,Hongwei Zhao,Lixiang Li,Dongying Ju,Cunjing Wang,Baigang An
出处
期刊:Nanomaterials
[MDPI AG]
日期:2022-10-28
卷期号:12 (21): 3804-3804
被引量:5
摘要
Porous carbon has been one desirable electrode material for supercapacitors, but it is still a challenge to balance the appropriate mesopore volume and a high specific surface area (SSA). Herein, a good balance between a high SSA and mesopore volume in biomass-derived porous carbon is realized by precarbonization of wheat husk under air atmosphere via a chloride salt sealing technique and successive KOH activation. Due to the role of molten salt generating mesopores in the precarbonized product, which can further serve as the active sites for the KOH activation to form micropores in the final carbon material, the mesopore–micropore structure of the porous carbon can be tuned by changing the precarbonization temperature. The appropriate amount of mesopores can provide more expressways for ion transfer to accelerate the transport kinetics of diffusion-controlled processes in the micropores. A high SSA can supply abundant sites for charge storage. Therefore, the porous carbon with a good balance between the SSA and mesopores exhibits a specific gravimetric capacitance of 402 F g−1 at 1.0 A g−1 in a three-electrode system. In a two-electrode symmetrical supercapacitor, the biomass-derived porous carbon also delivers a high specific gravimetric capacitance of 346 F g−1 at 1.0 A g−1 and a good cycling stability, retaining 98.59% of the initial capacitance after 30,000 cycles at 5.0 A−1. This work has fundamental merits for enhancing the electrochemical performance of the biomass-derived porous carbon by optimizing the SSA and pore structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI