Standard error estimation in meta-analysis of studies reporting medians

标准差 统计 荟萃分析 标准误差 样本量测定 四分位数 加权 背景(考古学) 随机效应模型 计量经济学 中值的 合并方差 数学 计算机科学 医学 置信区间 古生物学 几何学 生物 内科学 放射科
作者
Sean McGrath,Stephan Katzenschlager,Alexandra J. Zimmer,Alexander Seitel,Russell Steele,Andrea Benedetti
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:32 (2): 373-388 被引量:18
标识
DOI:10.1177/09622802221139233
摘要

We consider the setting of an aggregate data meta-analysis of a continuous outcome of interest. When the distribution of the outcome is skewed, it is often the case that some primary studies report the sample mean and standard deviation of the outcome and other studies report the sample median along with the first and third quartiles and/or minimum and maximum values. To perform meta-analysis in this context, a number of approaches have recently been developed to impute the sample mean and standard deviation from studies reporting medians. Then, standard meta-analytic approaches with inverse-variance weighting are applied based on the (imputed) study-specific sample means and standard deviations. In this article, we illustrate how this common practice can severely underestimate the within-study standard errors, which results in poor coverage for the pooled mean in common effect meta-analyses and overestimation of between-study heterogeneity in random effects meta-analyses. We propose a straightforward bootstrap approach to estimate the standard errors of the imputed sample means. Our simulation study illustrates how the proposed approach can improve the estimation of the within-study standard errors and consequently improve coverage for the pooled mean in common effect meta-analyses and estimation of between-study heterogeneity in random effects meta-analyses. Moreover, we apply the proposed approach in a meta-analysis to identify risk factors of a severe course of COVID-19.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9527完成签到,获得积分10
1秒前
1秒前
1秒前
C17发布了新的文献求助10
2秒前
9527发布了新的文献求助10
3秒前
3秒前
刻苦的鸭子完成签到 ,获得积分10
3秒前
4秒前
5秒前
MsEEi发布了新的文献求助10
7秒前
Pauline完成签到 ,获得积分10
8秒前
柳代云完成签到,获得积分10
8秒前
毛豆应助斯文泥猴桃采纳,获得10
9秒前
11秒前
Jim luo发布了新的文献求助10
12秒前
深情安青应助花佩剑采纳,获得10
13秒前
Sammy完成签到,获得积分10
14秒前
懒咩咩完成签到,获得积分10
15秒前
元气蛋完成签到,获得积分10
16秒前
16秒前
腼腆的烤鸡完成签到,获得积分10
17秒前
橘子完成签到,获得积分10
18秒前
香蕉觅云应助C17采纳,获得10
19秒前
19秒前
穆紫应助hkh采纳,获得10
19秒前
酷波er应助hkh采纳,获得10
19秒前
深情安青应助hkh采纳,获得10
19秒前
充电宝应助hkh采纳,获得10
19秒前
薰硝壤应助凤凰之玉采纳,获得30
20秒前
研友_VZG7GZ应助chen采纳,获得10
23秒前
23秒前
CynthiaaaCat完成签到,获得积分10
24秒前
24秒前
jt发布了新的文献求助10
25秒前
123完成签到,获得积分10
27秒前
zhang完成签到,获得积分10
27秒前
27秒前
28秒前
w1发布了新的文献求助10
28秒前
太阳发布了新的文献求助10
28秒前
高分求助中
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
PROJECT STUDIES; -A LATE MODERN UNIVERSITY REFORM? 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057772
求助须知:如何正确求助?哪些是违规求助? 2714072
关于积分的说明 7439066
捐赠科研通 2359232
什么是DOI,文献DOI怎么找? 1249940
科研通“疑难数据库(出版商)”最低求助积分说明 607315
版权声明 596334