Deep learning radiomics under multimodality explore association between muscle/fat and metastasis and survival in breast cancer patients

医学 转移 生物标志物 乳腺癌 癌症 内科学 肌萎缩 远处转移 肿瘤科 胸大肌 临床意义 放射科 病理 生物化学 化学
作者
Shidi Miao,Haobo Jia,Ke Cheng,Xiaohui Hu,Jing Li,Wenjuan Huang,Ruitao Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:12
标识
DOI:10.1093/bib/bbac432
摘要

Abstract Sarcopenia is correlated with poor clinical outcomes in breast cancer (BC) patients. However, there is no precise quantitative study on the correlation between body composition changes and BC metastasis and survival. The present study proposed a deep learning radiomics (DLR) approach to investigate the effects of muscle and fat on distant metastasis and death outcomes in BC patients. Image feature extraction was performed on 4th thoracic vertebra (T4) and 11th thoracic vertebra (T11) on computed tomography (CT) image levels by DLR, and image features were combined with clinical information to predict distant metastasis in BC patients. Clinical information combined with DLR significantly predicted distant metastasis in BC patients. In the test cohort, the area under the curve of model performance on clinical information combined with DLR was 0.960 (95% CI: 0.942–0.979, P < 0.001). The patients with distant metastases had a lower pectoral muscle index in T4 (PMI/T4) than in patients without metastases. PMI/T4 and visceral fat tissue area in T11 (VFA/T11) were independent prognostic factors for the overall survival in BC patients. The pectoralis muscle area in T4 (PMA/T4) and PMI/T4 is an independent prognostic factor for distant metastasis-free survival in BC patients. The current study further confirmed that muscle/fat of T4 and T11 levels have a significant effect on the distant metastasis of BC. Appending the network features of T4 and T11 to the model significantly enhances the prediction performance of distant metastasis of BC, providing a valuable biomarker for the early treatment of BC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
沙枣花墙子应助琪玛苏采纳,获得10
2秒前
坚定自信发布了新的文献求助10
2秒前
3秒前
wuchang发布了新的文献求助20
3秒前
3秒前
李某完成签到,获得积分10
4秒前
4秒前
Jasper应助lili采纳,获得10
5秒前
ziming313发布了新的文献求助10
6秒前
青青儿发布了新的文献求助10
6秒前
过江春雷发布了新的文献求助100
7秒前
monica项发布了新的文献求助10
7秒前
深情安青应助Han采纳,获得10
8秒前
8秒前
xzzt完成签到 ,获得积分10
8秒前
porcelain发布了新的文献求助10
9秒前
SYLH应助科研通管家采纳,获得10
12秒前
无私的芹应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
yznfly应助科研通管家采纳,获得30
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
13秒前
yznfly应助科研通管家采纳,获得30
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得20
13秒前
13秒前
无私的芹应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
14秒前
yznfly应助科研通管家采纳,获得30
14秒前
无私的芹应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
14秒前
ding应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959533
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126048
捐赠科研通 3237690
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802916