Deep learning radiomics under multimodality explore association between muscle/fat and metastasis and survival in breast cancer patients

医学 转移 生物标志物 乳腺癌 癌症 内科学 肌萎缩 远处转移 肿瘤科 胸大肌 临床意义 放射科 病理 生物化学 化学
作者
Shidi Miao,Haobo Jia,Ke Cheng,Xiaohui Hu,Jing Li,Wenjuan Huang,Ruitao Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:6
标识
DOI:10.1093/bib/bbac432
摘要

Abstract Sarcopenia is correlated with poor clinical outcomes in breast cancer (BC) patients. However, there is no precise quantitative study on the correlation between body composition changes and BC metastasis and survival. The present study proposed a deep learning radiomics (DLR) approach to investigate the effects of muscle and fat on distant metastasis and death outcomes in BC patients. Image feature extraction was performed on 4th thoracic vertebra (T4) and 11th thoracic vertebra (T11) on computed tomography (CT) image levels by DLR, and image features were combined with clinical information to predict distant metastasis in BC patients. Clinical information combined with DLR significantly predicted distant metastasis in BC patients. In the test cohort, the area under the curve of model performance on clinical information combined with DLR was 0.960 (95% CI: 0.942–0.979, P < 0.001). The patients with distant metastases had a lower pectoral muscle index in T4 (PMI/T4) than in patients without metastases. PMI/T4 and visceral fat tissue area in T11 (VFA/T11) were independent prognostic factors for the overall survival in BC patients. The pectoralis muscle area in T4 (PMA/T4) and PMI/T4 is an independent prognostic factor for distant metastasis-free survival in BC patients. The current study further confirmed that muscle/fat of T4 and T11 levels have a significant effect on the distant metastasis of BC. Appending the network features of T4 and T11 to the model significantly enhances the prediction performance of distant metastasis of BC, providing a valuable biomarker for the early treatment of BC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助weirdo采纳,获得10
刚刚
小马甲应助weirdo采纳,获得10
刚刚
赘婿应助weirdo采纳,获得10
刚刚
传奇3应助weirdo采纳,获得10
刚刚
1秒前
Shaw完成签到,获得积分10
1秒前
zzj发布了新的文献求助10
2秒前
GD完成签到 ,获得积分10
2秒前
li完成签到,获得积分10
2秒前
西瓜完成签到 ,获得积分10
2秒前
夏时安完成签到 ,获得积分10
2秒前
3秒前
冷静的伊完成签到,获得积分10
3秒前
蜗牛的世界完成签到,获得积分10
3秒前
3秒前
菜大炮完成签到,获得积分20
3秒前
笑笑丶不爱笑完成签到,获得积分10
4秒前
大模型应助rio采纳,获得10
4秒前
5秒前
科研通AI2S应助美美采纳,获得10
5秒前
小吕完成签到 ,获得积分10
5秒前
脑洞疼应助小白采纳,获得10
5秒前
6秒前
ShowMaker给友好山菡的求助进行了留言
6秒前
粉面菜蛋完成签到,获得积分10
6秒前
su发布了新的文献求助10
6秒前
journey完成签到 ,获得积分10
6秒前
mori给mori的求助进行了留言
6秒前
zhendema完成签到,获得积分10
6秒前
思源应助荼蘼采纳,获得10
7秒前
小悟空的美好年华完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
Jiangx发布了新的文献求助10
8秒前
扎心发布了新的文献求助10
8秒前
yhz_zjut完成签到,获得积分20
9秒前
凌风完成签到,获得积分10
9秒前
你今天学了多少完成签到 ,获得积分10
9秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384