亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EnsembleSplice: ensemble deep learning model for splice site prediction

剪接 计算机科学 人工智能 卷积神经网络 智人 机器学习 深度学习 计算生物学 字错误率 DNA微阵列 RNA剪接 人工神经网络 集成学习 数据挖掘 生物 基因 遗传学 核糖核酸 社会学 基因表达 人类学
作者
Victor Akpokiro,Trevor Martin,Oluwatosin Oluwadare
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:23 (1) 被引量:12
标识
DOI:10.1186/s12859-022-04971-w
摘要

Identifying splice site regions is an important step in the genomic DNA sequencing pipelines of biomedical and pharmaceutical research. Within this research purview, efficient and accurate splice site detection is highly desirable, and a variety of computational models have been developed toward this end. Neural network architectures have recently been shown to outperform classical machine learning approaches for the task of splice site prediction. Despite these advances, there is still considerable potential for improvement, especially regarding model prediction accuracy, and error rate.Given these deficits, we propose EnsembleSplice, an ensemble learning architecture made up of four (4) distinct convolutional neural networks (CNN) model architecture combination that outperform existing splice site detection methods in the experimental evaluation metrics considered including the accuracies and error rates. We trained and tested a variety of ensembles made up of CNNs and DNNs using the five-fold cross-validation method to identify the model that performed the best across the evaluation and diversity metrics. As a result, we developed our diverse and highly effective splice site (SS) detection model, which we evaluated using two (2) genomic Homo sapiens datasets and the Arabidopsis thaliana dataset. The results showed that for of the Homo sapiens EnsembleSplice achieved accuracies of 94.16% for one of the acceptor splice sites and 95.97% for donor splice sites, with an error rate for the same Homo sapiens dataset, 4.03% for the donor splice sites and 5.84% for the acceptor splice sites datasets.Our five-fold cross validation ensured the prediction accuracy of our models are consistent. For reproducibility, all the datasets used, models generated, and results in our work are publicly available in our GitHub repository here: https://github.com/OluwadareLab/EnsembleSplice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fladen发布了新的文献求助200
8秒前
领导范儿应助cqhecq采纳,获得30
17秒前
Wfmmm完成签到,获得积分10
23秒前
1分钟前
完美世界应助无辜笑容采纳,获得10
1分钟前
cqhecq发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
香蕉觅云应助cqhecq采纳,获得30
2分钟前
Akim应助玄音采纳,获得10
2分钟前
碳酸芙兰完成签到,获得积分10
2分钟前
2分钟前
alex_zhao完成签到,获得积分10
2分钟前
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
2分钟前
完美世界应助无辜笑容采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
cqhecq发布了新的文献求助30
3分钟前
大模型应助balabala采纳,获得10
3分钟前
charih完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
balabala发布了新的文献求助10
3分钟前
fladen发布了新的文献求助200
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
李健应助andrele采纳,获得10
4分钟前
高大的蜡烛完成签到,获得积分20
4分钟前
4分钟前
4分钟前
balabala完成签到,获得积分20
4分钟前
4分钟前
4分钟前
kk发布了新的文献求助10
4分钟前
balabala关注了科研通微信公众号
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503056
关于积分的说明 11111228
捐赠科研通 3234093
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264