EnsembleSplice: ensemble deep learning model for splice site prediction

剪接 计算机科学 人工智能 卷积神经网络 智人 机器学习 深度学习 计算生物学 字错误率 DNA微阵列 RNA剪接 人工神经网络 集成学习 数据挖掘 生物 基因 遗传学 核糖核酸 社会学 基因表达 人类学
作者
Victor Akpokiro,Trevor Martin,Oluwatosin Oluwadare
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:23 (1) 被引量:12
标识
DOI:10.1186/s12859-022-04971-w
摘要

Identifying splice site regions is an important step in the genomic DNA sequencing pipelines of biomedical and pharmaceutical research. Within this research purview, efficient and accurate splice site detection is highly desirable, and a variety of computational models have been developed toward this end. Neural network architectures have recently been shown to outperform classical machine learning approaches for the task of splice site prediction. Despite these advances, there is still considerable potential for improvement, especially regarding model prediction accuracy, and error rate.Given these deficits, we propose EnsembleSplice, an ensemble learning architecture made up of four (4) distinct convolutional neural networks (CNN) model architecture combination that outperform existing splice site detection methods in the experimental evaluation metrics considered including the accuracies and error rates. We trained and tested a variety of ensembles made up of CNNs and DNNs using the five-fold cross-validation method to identify the model that performed the best across the evaluation and diversity metrics. As a result, we developed our diverse and highly effective splice site (SS) detection model, which we evaluated using two (2) genomic Homo sapiens datasets and the Arabidopsis thaliana dataset. The results showed that for of the Homo sapiens EnsembleSplice achieved accuracies of 94.16% for one of the acceptor splice sites and 95.97% for donor splice sites, with an error rate for the same Homo sapiens dataset, 4.03% for the donor splice sites and 5.84% for the acceptor splice sites datasets.Our five-fold cross validation ensured the prediction accuracy of our models are consistent. For reproducibility, all the datasets used, models generated, and results in our work are publicly available in our GitHub repository here: https://github.com/OluwadareLab/EnsembleSplice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助WZ0904采纳,获得10
刚刚
Sofia发布了新的文献求助60
3秒前
4秒前
橘子姐姐发布了新的文献求助10
5秒前
yanyan完成签到,获得积分10
6秒前
TT完成签到,获得积分10
7秒前
7秒前
了然完成签到 ,获得积分10
8秒前
jxp完成签到,获得积分10
8秒前
jojo完成签到 ,获得积分10
9秒前
9秒前
勤劳落雁完成签到 ,获得积分10
9秒前
12秒前
爆米花应助科研通管家采纳,获得30
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
田様应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
RC_Wang应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
赘婿应助Quzhengkai采纳,获得10
13秒前
sutharsons应助科研通管家采纳,获得30
13秒前
李爱国应助科研通管家采纳,获得30
14秒前
14秒前
14秒前
调研昵称发布了新的文献求助10
14秒前
CodeCraft应助清新的苑博采纳,获得10
15秒前
所所应助Chen采纳,获得10
16秒前
18秒前
18秒前
goldenfleece发布了新的文献求助10
18秒前
怕黑的钥匙完成签到 ,获得积分10
18秒前
zhangsf88完成签到,获得积分10
18秒前
科研通AI5应助科研小能手采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808