Deep learning for predicting rate-induced tipping

引爆点(物理) 心理学 工程类 电气工程
作者
Yu Huang,Sebastian Bathiany,Peter Ashwin,Niklas Boers
出处
期刊:Nature Machine Intelligence [Springer Nature]
被引量:1
标识
DOI:10.1038/s42256-024-00937-0
摘要

Abstract Nonlinear dynamical systems exposed to changing forcing values can exhibit catastrophic transitions between distinct states. The phenomenon of critical slowing down can help anticipate such transitions if caused by a bifurcation and if the change in forcing is slow compared with the system’s internal timescale. However, in many real-world situations, these assumptions are not met and transitions can be triggered because the forcing exceeds a critical rate. For instance, the rapid pace of anthropogenic climate change compared with the internal timescales of key Earth system components, like polar ice sheets or the Atlantic Meridional Overturning Circulation, poses significant risk of rate-induced tipping. Moreover, random perturbations may cause some trajectories to cross an unstable boundary whereas others do not—even under the same forcing. Critical-slowing-down-based indicators generally cannot distinguish these cases of noise-induced tipping from no tipping. This severely limits our ability to assess the tipping risks and to predict individual trajectories. To address this, we make the first attempt to develop a deep learning framework predicting the transition probabilities of dynamical systems ahead of rate-induced transitions. Our method issues early warnings, as demonstrated on three prototypical systems for rate-induced tipping subjected to time-varying equilibrium drift and noise perturbations. Exploiting explainable artificial intelligence methods, our framework captures the fingerprints for the early detection of rate-induced tipping, even with long lead times. Our findings demonstrate the predictability of rate-induced and noise-induced tipping, advancing our ability to determine safe operating spaces for a broader class of dynamical systems than possible so far.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗柚子完成签到,获得积分10
刚刚
abc完成签到 ,获得积分10
刚刚
PMX发布了新的文献求助10
1秒前
标致小伙发布了新的文献求助10
1秒前
joysa完成签到,获得积分10
1秒前
131343完成签到,获得积分10
1秒前
FashionBoy应助慕子采纳,获得10
2秒前
2秒前
2秒前
L龙发布了新的文献求助10
3秒前
3秒前
善学以致用应助sunwending采纳,获得10
3秒前
东郭秋凌完成签到,获得积分10
3秒前
胤宸完成签到,获得积分10
4秒前
5秒前
5秒前
hohokuz完成签到,获得积分20
5秒前
一切顺遂应助Adian采纳,获得100
5秒前
5秒前
April发布了新的文献求助20
6秒前
Huaiman发布了新的文献求助10
7秒前
科研通AI5应助转角一起走采纳,获得20
7秒前
蛋炒饭完成签到,获得积分10
8秒前
执着完成签到,获得积分10
8秒前
研友_ED5GK发布了新的文献求助10
8秒前
9秒前
绿麦盲区完成签到,获得积分10
9秒前
Yvonne发布了新的文献求助10
9秒前
10秒前
10秒前
minghanl完成签到,获得积分10
11秒前
zhaomr发布了新的文献求助10
11秒前
科目三应助pbf采纳,获得20
12秒前
12秒前
12秒前
same完成签到,获得积分10
13秒前
科研通AI5应助俭朴夜雪采纳,获得30
13秒前
读研好难发布了新的文献求助10
14秒前
Adian完成签到,获得积分10
15秒前
Huaiman完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762