Deep learning for predicting rate-induced tipping

引爆点(物理) 心理学 工程类 电气工程
作者
Yu Huang,Sebastian Bathiany,Peter Ashwin,Niklas Boers
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
被引量:1
标识
DOI:10.1038/s42256-024-00937-0
摘要

Abstract Nonlinear dynamical systems exposed to changing forcing values can exhibit catastrophic transitions between distinct states. The phenomenon of critical slowing down can help anticipate such transitions if caused by a bifurcation and if the change in forcing is slow compared with the system’s internal timescale. However, in many real-world situations, these assumptions are not met and transitions can be triggered because the forcing exceeds a critical rate. For instance, the rapid pace of anthropogenic climate change compared with the internal timescales of key Earth system components, like polar ice sheets or the Atlantic Meridional Overturning Circulation, poses significant risk of rate-induced tipping. Moreover, random perturbations may cause some trajectories to cross an unstable boundary whereas others do not—even under the same forcing. Critical-slowing-down-based indicators generally cannot distinguish these cases of noise-induced tipping from no tipping. This severely limits our ability to assess the tipping risks and to predict individual trajectories. To address this, we make the first attempt to develop a deep learning framework predicting the transition probabilities of dynamical systems ahead of rate-induced transitions. Our method issues early warnings, as demonstrated on three prototypical systems for rate-induced tipping subjected to time-varying equilibrium drift and noise perturbations. Exploiting explainable artificial intelligence methods, our framework captures the fingerprints for the early detection of rate-induced tipping, even with long lead times. Our findings demonstrate the predictability of rate-induced and noise-induced tipping, advancing our ability to determine safe operating spaces for a broader class of dynamical systems than possible so far.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助周老八采纳,获得10
刚刚
胡图图完成签到,获得积分10
刚刚
收手吧大哥发布了新的文献求助100
刚刚
李瑞完成签到,获得积分10
1秒前
传奇3应助勤恳的红酒采纳,获得10
1秒前
RowanLuo完成签到,获得积分10
1秒前
菟丝子完成签到,获得积分10
1秒前
ztt27999完成签到,获得积分10
1秒前
哈哈李完成签到,获得积分10
2秒前
sjlu完成签到,获得积分10
2秒前
Samuel_完成签到,获得积分10
3秒前
所所应助栾瑜宝采纳,获得10
4秒前
迷人紫寒完成签到,获得积分10
4秒前
XIAOWANG发布了新的文献求助10
6秒前
6秒前
现代小丸子完成签到 ,获得积分10
6秒前
搞怪的又蓝应助从容幻儿采纳,获得10
7秒前
7秒前
章鱼完成签到,获得积分10
7秒前
再美完成签到,获得积分10
8秒前
meww发布了新的文献求助10
8秒前
石头完成签到,获得积分10
8秒前
脑袋空空完成签到,获得积分10
8秒前
海盐发布了新的文献求助10
9秒前
大王完成签到,获得积分10
9秒前
9秒前
整齐的不评完成签到,获得积分10
10秒前
魔幻哈密瓜完成签到,获得积分20
10秒前
平淡远山发布了新的文献求助10
10秒前
pcr163应助收手吧大哥采纳,获得100
11秒前
安详的嵩应助JY'采纳,获得10
11秒前
冯大哥完成签到,获得积分10
11秒前
bkagyin应助seven765采纳,获得10
11秒前
米奇妙妙屋完成签到,获得积分10
12秒前
阿斯披粼完成签到,获得积分10
12秒前
iNk应助李瑞采纳,获得20
12秒前
12秒前
12秒前
平淡小鸭子完成签到,获得积分10
12秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259