Deep learning for predicting rate-induced tipping

引爆点(物理) 心理学 工程类 电气工程
作者
Yu Huang,Sebastian Bathiany,Peter Ashwin,Niklas Boers
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
被引量:1
标识
DOI:10.1038/s42256-024-00937-0
摘要

Abstract Nonlinear dynamical systems exposed to changing forcing values can exhibit catastrophic transitions between distinct states. The phenomenon of critical slowing down can help anticipate such transitions if caused by a bifurcation and if the change in forcing is slow compared with the system’s internal timescale. However, in many real-world situations, these assumptions are not met and transitions can be triggered because the forcing exceeds a critical rate. For instance, the rapid pace of anthropogenic climate change compared with the internal timescales of key Earth system components, like polar ice sheets or the Atlantic Meridional Overturning Circulation, poses significant risk of rate-induced tipping. Moreover, random perturbations may cause some trajectories to cross an unstable boundary whereas others do not—even under the same forcing. Critical-slowing-down-based indicators generally cannot distinguish these cases of noise-induced tipping from no tipping. This severely limits our ability to assess the tipping risks and to predict individual trajectories. To address this, we make the first attempt to develop a deep learning framework predicting the transition probabilities of dynamical systems ahead of rate-induced transitions. Our method issues early warnings, as demonstrated on three prototypical systems for rate-induced tipping subjected to time-varying equilibrium drift and noise perturbations. Exploiting explainable artificial intelligence methods, our framework captures the fingerprints for the early detection of rate-induced tipping, even with long lead times. Our findings demonstrate the predictability of rate-induced and noise-induced tipping, advancing our ability to determine safe operating spaces for a broader class of dynamical systems than possible so far.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Maestro_S应助jyyg采纳,获得10
1秒前
1秒前
狂野萤发布了新的文献求助10
1秒前
科研通AI2S应助小王采纳,获得10
1秒前
蕾蕾发布了新的文献求助10
2秒前
winki发布了新的文献求助10
2秒前
CipherSage应助modesty采纳,获得10
3秒前
FooLeup立仔完成签到,获得积分10
3秒前
科研通AI5应助安心采纳,获得10
3秒前
英勇的沛春完成签到 ,获得积分10
3秒前
3秒前
彭于晏应助请我喝1杯可乐采纳,获得10
3秒前
diedie完成签到 ,获得积分10
4秒前
静水流深发布了新的文献求助10
4秒前
neechine发布了新的文献求助10
4秒前
随便起个名完成签到,获得积分10
4秒前
archer发布了新的文献求助10
5秒前
5秒前
孤独的问凝完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助50
5秒前
深情安青应助鱿鱼苦瓜汤采纳,获得10
5秒前
鹿友绿发布了新的文献求助10
6秒前
伶俐的千柔完成签到,获得积分10
6秒前
科研通AI5应助gwd采纳,获得10
6秒前
797571完成签到,获得积分20
6秒前
完美世界应助嗯呐采纳,获得10
6秒前
Gypsophila完成签到,获得积分10
6秒前
UY完成签到,获得积分10
7秒前
10000完成签到,获得积分10
7秒前
雪L完成签到,获得积分10
7秒前
Charon发布了新的文献求助10
7秒前
一派倾城发布了新的文献求助10
7秒前
花生完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
松山湖宗师完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475