亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning for predicting rate-induced tipping

引爆点(物理) 心理学 工程类 电气工程
作者
Yu Huang,Sebastian Bathiany,Peter Ashwin,Niklas Boers
出处
期刊:Nature Machine Intelligence [Springer Nature]
被引量:1
标识
DOI:10.1038/s42256-024-00937-0
摘要

Abstract Nonlinear dynamical systems exposed to changing forcing values can exhibit catastrophic transitions between distinct states. The phenomenon of critical slowing down can help anticipate such transitions if caused by a bifurcation and if the change in forcing is slow compared with the system’s internal timescale. However, in many real-world situations, these assumptions are not met and transitions can be triggered because the forcing exceeds a critical rate. For instance, the rapid pace of anthropogenic climate change compared with the internal timescales of key Earth system components, like polar ice sheets or the Atlantic Meridional Overturning Circulation, poses significant risk of rate-induced tipping. Moreover, random perturbations may cause some trajectories to cross an unstable boundary whereas others do not—even under the same forcing. Critical-slowing-down-based indicators generally cannot distinguish these cases of noise-induced tipping from no tipping. This severely limits our ability to assess the tipping risks and to predict individual trajectories. To address this, we make the first attempt to develop a deep learning framework predicting the transition probabilities of dynamical systems ahead of rate-induced transitions. Our method issues early warnings, as demonstrated on three prototypical systems for rate-induced tipping subjected to time-varying equilibrium drift and noise perturbations. Exploiting explainable artificial intelligence methods, our framework captures the fingerprints for the early detection of rate-induced tipping, even with long lead times. Our findings demonstrate the predictability of rate-induced and noise-induced tipping, advancing our ability to determine safe operating spaces for a broader class of dynamical systems than possible so far.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彪壮的青亦完成签到,获得积分10
1秒前
15秒前
19秒前
23秒前
hu发布了新的文献求助10
23秒前
28秒前
李健的小迷弟应助hu采纳,获得10
33秒前
35秒前
37秒前
小马甲应助科研通管家采纳,获得30
37秒前
充电宝应助科研通管家采纳,获得10
37秒前
losago4954完成签到,获得积分10
45秒前
55秒前
自由一一关注了科研通微信公众号
1分钟前
Big_Show发布了新的文献求助10
1分钟前
Marciu33发布了新的文献求助10
1分钟前
小泉完成签到 ,获得积分10
1分钟前
找文献完成签到 ,获得积分10
1分钟前
1分钟前
mashibeo完成签到,获得积分10
1分钟前
1分钟前
自由一一发布了新的文献求助30
1分钟前
榴莲完成签到,获得积分10
1分钟前
2分钟前
qqq完成签到,获得积分10
2分钟前
Big_Show完成签到,获得积分10
2分钟前
捉迷藏完成签到,获得积分10
2分钟前
嘉心糖给whyzz的求助进行了留言
3分钟前
3分钟前
聪明灭绝完成签到 ,获得积分10
3分钟前
顺利又菱完成签到 ,获得积分10
3分钟前
沙脑完成签到 ,获得积分10
3分钟前
小土豆完成签到 ,获得积分10
3分钟前
嘤嘤怪完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
leokaka12发布了新的文献求助10
4分钟前
4分钟前
故意的怜晴完成签到 ,获得积分10
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303216
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482400
捐赠科研通 2611434
什么是DOI,文献DOI怎么找? 1425877
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 646980