化学
量子点
类型(生物学)
纳米技术
生态学
生物
材料科学
作者
Zhiyong Tang,Zhixuan Wang,H. X. Yang,Zhiwei Ma,Yejun Zhang,Jiang Jiang,Qiangbin Wang
摘要
Control over the carrier type of semiconductor quantum dots (QDs) is pivotal for their optoelectronic device applications, and it remains a nontrivial and challenging task. Herein, a facile doping strategy via K impurity exchange is proposed to convert the NIR n-type toxic heavy-metal-free AgAuSe (AAS) QDs to p-type. When the dopant reaches saturation at approximately 22.2%, the Femi level shifts down to near the valence band, with the p-type carrier characteristics confirmed through photoluminescence, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy analysis. First-principles calculations reveal that K impurities preferentially occupy interstitial positions and form complex defects when combined with the abundant cationic vacancy in AAS caused by the high mobility of Ag, thereby functioning as a shallow acceptor to enhance p-type conductivity. A p-n homojunction based on AAS QDs has been fabricated and served as the active layer in a photodiode device, which demonstrates an excellent room-temperature detectivity of up to 2.29 × 10
科研通智能强力驱动
Strongly Powered by AbleSci AI