Revealing therapeutic targets and drugs from Chinese medicine for ulcerative colitis using bioinformatics

溃疡性结肠炎 医学 生物信息学 中医药 免疫系统 计算生物学 生物 免疫学 疾病 病理 替代医学
作者
Feng Xu,Xiaofen Li,Xiangpei Wang,Hongmei Wu,Song Chen,Jianyang Chen,Xiang‐Peng Kong,Zhenglin Yang
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-11
标识
DOI:10.1080/07391102.2024.2440651
摘要

Pathogenesis and therapeutic drugs for ulcerative colitis (UC) have plagued researchers worldwide. In this study, therapeutic targets, and drugs from Chinese medicines for UC were screened using bioinformatics. We downloaded five datasets from the GEO database and three machine learning algorithms were used for screening diagnostic biomarkers of UC. Combined with the differential genes for UC, gene sets related to bile acid metabolism, short-chain fatty acids, apoptosis, pyroptosis, G-protein-coupled receptors, mitochondria, and autophagy were collected to screen the core targets, and analyze the association of therapeutic genes (diagnostic biomarkers and core targets) with immune cells. In addition, screening ingredients of Chinese medicines based on UC therapeutic targets was performed. Molecular docking, molecular dynamics simulation, and literature validation were also performed. The screening yielded 37 key therapeutic targets, including 5 diagnostic biomarkers (CCL11, CXCL1, PDZK1IP1, TIMP1, and UGT2A3) and 32 core targets based on hot gene sets. Immune cell infiltration was strongly associated with therapeutic targets in UC, especially neutrophils, macrophages, mast cells, and dendritic cells. Furthermore, a total of 33 compounds with high safety had been recognized as having potential to mitigate UC by reverse prediction from Chinese medicines, and molecular docking, molecular dynamics simulation, and literature reports preliminarily validated the screening results. Although further experimental validation is needed, this work provides some potential therapeutic targets and drugs from Chinese medicines against UC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cj326完成签到 ,获得积分10
3秒前
3秒前
4秒前
455关注了科研通微信公众号
4秒前
香蕉海白发布了新的文献求助10
4秒前
4秒前
南山关注了科研通微信公众号
4秒前
5秒前
5秒前
ljc完成签到,获得积分10
5秒前
lxy发布了新的文献求助10
7秒前
熹熹完成签到,获得积分10
8秒前
领导范儿应助Flori采纳,获得30
8秒前
8秒前
9秒前
Yancy完成签到,获得积分10
9秒前
英姑应助皮卡丘采纳,获得10
10秒前
LLL完成签到,获得积分10
10秒前
布隆的保龄球完成签到,获得积分10
14秒前
14秒前
兰天发布了新的文献求助20
14秒前
14秒前
wshengnan发布了新的文献求助10
19秒前
精灵夜雨应助潇洒的初柔采纳,获得10
20秒前
李爱国应助香蕉海白采纳,获得10
21秒前
22秒前
24秒前
ziying126发布了新的文献求助10
27秒前
登徒子好色完成签到,获得积分10
28秒前
30秒前
科研通AI5应助zcydbttj2011采纳,获得10
30秒前
石一完成签到 ,获得积分10
31秒前
华仔应助芝麻采纳,获得10
33秒前
35秒前
DT驳回了传奇3应助
37秒前
38秒前
Celestine完成签到,获得积分10
39秒前
Cyrus完成签到 ,获得积分10
40秒前
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667802
求助须知:如何正确求助?哪些是违规求助? 3226272
关于积分的说明 9768903
捐赠科研通 2936222
什么是DOI,文献DOI怎么找? 1608316
邀请新用户注册赠送积分活动 759622
科研通“疑难数据库(出版商)”最低求助积分说明 735407