Atomization process of GH4099 superalloy powder prepared by dual-gas nozzle

物理 高温合金 喷嘴 对偶(语法数字) 过程(计算) 冶金 热力学 合金 材料科学 计算机科学 操作系统 文学类 艺术
作者
Bo Chen,Zheyuan Zhang,Wenying Li,Yanying Li,Yingjie Lu,Yilong Zhong,Yanbiao Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (2)
标识
DOI:10.1063/5.0254838
摘要

GH4099 is a typical age-hardened nickel-based superalloy with excellent overall performance, widely used in aerospace and other fields. In this study, a novel tight-coupled dual-gas nozzle is designed, and a two-phase coupling breakup model for the atomization process is established based on the volume of fluid flow model. The breakup behavior of the melt under high-speed gas flow is investigated in depth. The generation of melt droplets is analyzed, in the atomization process of this nozzle, the melt enters the atomization chamber and is first impacted by the intermediate airflow to generate the initial droplets, and the initial droplets move toward the outer air flow channel under the action of the air flow and continue to break into smaller droplets under the action of the outer air flow channel. Powder particles are sampled at the nozzle exit, and the particle characteristics generated by atomization are analyzed in detail. The final particle size distribution is obtained, and the influence of gas pressure and gas injection angle on the particle size distribution are explored. The results show that, within the studied parameter range, as the gas pressure increases, the powder particle size first increases and then decreases. As the gas injection angle decreases, the powder particle size also decreases, so a small injection angle is favorable to the powder particle size reduction. When the gas pressure P2 = 4.5 MPa, the injection angle α = 25°, The powder has the narrowest particle size distribution, and the particle size is smaller, the median diameter of the particles D50 = 29.1 μm. The findings of this study provide important references for the nozzle structure design and process parameter optimization for high-temperature alloys.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZY完成签到 ,获得积分10
刚刚
似风完成签到,获得积分10
刚刚
强强强强完成签到,获得积分10
1秒前
诸笑白完成签到,获得积分10
1秒前
冬冬完成签到,获得积分10
1秒前
1秒前
凝光完成签到 ,获得积分10
1秒前
alei1203完成签到,获得积分10
2秒前
lr完成签到 ,获得积分10
2秒前
2秒前
2秒前
李健应助美丽谷蕊采纳,获得10
2秒前
2秒前
2秒前
科研通AI5应助现实的青文采纳,获得10
3秒前
琪琪琪完成签到,获得积分10
3秒前
大个应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
耶椰耶完成签到 ,获得积分10
4秒前
4秒前
读大学好难完成签到,获得积分10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
燕子完成签到,获得积分10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
Pupil发布了新的文献求助10
5秒前
凝雁完成签到,获得积分10
5秒前
现实的阔阔完成签到 ,获得积分10
5秒前
wtdai完成签到,获得积分10
6秒前
宇文青寒完成签到,获得积分10
7秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484727
求助须知:如何正确求助?哪些是违规求助? 3073734
关于积分的说明 9132244
捐赠科研通 2765327
什么是DOI,文献DOI怎么找? 1517845
邀请新用户注册赠送积分活动 702289
科研通“疑难数据库(出版商)”最低求助积分说明 701193