Ultra‐High Capacitive Energy Storage Density at 150 °C Achieved in Polyetherimide Composite Films by Filler and Structure Design

聚醚酰亚胺 材料科学 电介质 复合数 纳米复合材料 复合材料 热稳定性 储能 化学工程 聚合物 光电子学 功率(物理) 量子力学 物理 工程类
作者
Yan Guo,Weichen Zhao,Da Li,Jinnan Liu,Jin Qian,Li‐Xia Pang,Tao Zhou,Wenfeng Liu,Zhaobo Liu,Houbing Huang,Jiwei Zhai,Di Zhou
出处
期刊:Advanced Materials [Wiley]
卷期号:37 (6): e2415652-e2415652 被引量:30
标识
DOI:10.1002/adma.202415652
摘要

Abstract Polymer dielectrics are crucial for electronic communications and industrial applications due to their high breakdown field strength ( E b ), fast charge/discharge speed, and temperature stability. The upcoming electronic‐electrical systems pose a significant challenge, necessitating polymeric dielectrics to exhibit exceptional thermal stability and energy storage capabilities at high temperatures. Here, ultra‐high dielectric constant ( ɛ r ) and charge/discharge efficiency ( η ) of 0.55Bi 0.5 (Na 0.84 K 0.16 ) 0.5 TiO 3 ‐0.45(Bi 0.1 Sr 0.85 )TiO 3 (BNKT‐BST) ceramics are prepared by the solid‐phase reaction method and added to polyetherimide (PEI) to form BNKT‐BST/PEI nanocomposites with various structures. The findings indicate that the sandwich‐structured BNKT‐BST/PEI nanocomposite achieves the highest discharged energy density ( U d ) of 7.7 J cm −3 with η of 80.2% when the E b is 650 MV m −1 at 150 °C. This is primarily due to the incorporation of BNKT‐BST nanoparticles and the multilayer structure design, which significantly improves the composite's ɛ r and E b . Additionally, the sandwich‐structured composites show excellent cycling stability at 500 MV m −1 and 150 °C, with U d of ≈ 4.7 J cm −3 and η greater than 90%. The research presents nanocomposites with high energy storage density and excellent stability, crucial for the practical application of polymer dielectrics in high‐temperature environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XiaohuLee完成签到,获得积分10
刚刚
gnr2000完成签到,获得积分10
刚刚
戴维少尉完成签到,获得积分10
刚刚
1秒前
木棉哆哆完成签到 ,获得积分10
1秒前
于吉武完成签到,获得积分10
1秒前
caopeili完成签到 ,获得积分10
1秒前
WUT完成签到,获得积分10
1秒前
赘婿应助YAN采纳,获得10
2秒前
CodeCraft应助田博妍采纳,获得10
3秒前
maodou完成签到,获得积分10
3秒前
laville完成签到,获得积分10
4秒前
hhyy完成签到 ,获得积分10
5秒前
宏哥完成签到,获得积分10
5秒前
洛城l完成签到,获得积分10
5秒前
三寿完成签到,获得积分10
6秒前
Gloria完成签到,获得积分10
6秒前
major完成签到,获得积分10
6秒前
shenqueying发布了新的文献求助10
7秒前
爱笑子默完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
爆米花应助zenith968采纳,获得10
8秒前
Joaquin完成签到,获得积分10
8秒前
specium完成签到,获得积分10
9秒前
小医小鱼完成签到,获得积分10
9秒前
TG303完成签到,获得积分10
10秒前
nn完成签到,获得积分10
10秒前
田瑜完成签到,获得积分10
11秒前
yangyeye完成签到 ,获得积分10
11秒前
ceeray23应助WNL采纳,获得10
12秒前
归海一刀完成签到,获得积分10
12秒前
生动的大侠完成签到,获得积分10
12秒前
泉水丁冬2023完成签到,获得积分0
12秒前
大河细流完成签到 ,获得积分10
13秒前
momo完成签到,获得积分10
13秒前
高大莺完成签到 ,获得积分10
14秒前
hyx完成签到 ,获得积分20
16秒前
小冯完成签到,获得积分10
16秒前
Allen完成签到,获得积分10
17秒前
外向尔竹完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645234
求助须知:如何正确求助?哪些是违规求助? 4768151
关于积分的说明 15027004
捐赠科研通 4803757
什么是DOI,文献DOI怎么找? 2568448
邀请新用户注册赠送积分活动 1525778
关于科研通互助平台的介绍 1485451