🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Improving Neural Machine Translation in the Field of Electrical Engineering by Using Sentence Backbone Information

机器翻译 判决 计算机科学 翻译(生物学) 领域(数学) 人工智能 自然语言处理 神经工程 数学 化学 生物化学 基因 信使核糖核酸 纯数学
作者
B Teng,Yuan Chen,Juwei Zhang
出处
期刊:ACM Transactions on Asian and Low-Resource Language Information Processing
标识
DOI:10.1145/3712261
摘要

Due to the limited availability of corpora in the field of Electrical Engineering and the presence of numerous specialized terms, neural machine translation (NMT) performs poorly in translating the sentence backbone information when it is applied to corpora in the field of Electrical Engineering. In response to this issue, A method to improve NMT by using the sentence backbone information is proposed in this paper. In the proposed method, the source language sentences are used as the input of the Sentence Backbone Information Extraction Model to obtain the sentence backbone information, and then the sentence backbone information are incorporated as an auxiliary during the training process of the NMT model. Furthermore, a module called the Sentence Backbone Information Enhancement Module is introduced. It utilizes the dependency parse trees of the source language sentences to generate the sentence backbone mask matrices. These matrices are then applied to the encoder to force the NMT model to pay more attention to the backbones of sentences. On the English-Chinese parallel corpus in the field of Electrical Engineering, the proposed method in this paper outperforms the Transformer baseline translation model by 1.25 BLEU points. And it outperforms the baseline model in both METEOR and ROUGE-L evaluation metrics. It indicates that the proposed method in this paper can effectively improve translation performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初之发布了新的文献求助10
1秒前
2秒前
琛琛多发文章完成签到,获得积分10
2秒前
3秒前
开心蜜蜂发布了新的文献求助10
3秒前
清爽冬卉完成签到 ,获得积分10
4秒前
4秒前
完美世界应助可咳咳咳采纳,获得10
5秒前
5秒前
7秒前
苹果雁易完成签到,获得积分10
10秒前
个性醉波发布了新的文献求助10
10秒前
乘风破浪完成签到,获得积分10
11秒前
dazhong发布了新的文献求助10
11秒前
13秒前
16秒前
猪猪hero发布了新的文献求助10
16秒前
17秒前
18秒前
个性醉波发布了新的文献求助10
18秒前
22秒前
22秒前
an12138完成签到,获得积分10
22秒前
无花果应助初之采纳,获得10
23秒前
wizards发布了新的文献求助10
24秒前
fanfan发布了新的文献求助10
24秒前
bkagyin应助wzwz采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
桐桐应助科研通管家采纳,获得10
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
共享精神应助科研通管家采纳,获得10
26秒前
完美世界应助XIXI采纳,获得10
27秒前
华仔应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
Orange应助科研通管家采纳,获得30
27秒前
SYLH应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得10
27秒前
zyl应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3599532
求助须知:如何正确求助?哪些是违规求助? 3168326
关于积分的说明 9556912
捐赠科研通 2874684
什么是DOI,文献DOI怎么找? 1578214
邀请新用户注册赠送积分活动 742025
科研通“疑难数据库(出版商)”最低求助积分说明 725037