Discovering geroprotectors through the explainable artificial intelligence-based platform AgeXtend

秀丽隐杆线虫 计算生物学 生物 衰老 细胞衰老 健康衰老 生物化学 遗传学 医学 基因 老年学 表型
作者
Sakshi Arora,Aayushi Mittal,Subhadeep Duari,Sonam Chauhan,Nilesh Kumar Dixit,Sanjay Kumar Mohanty,Arushi Sharma,Saveena Solanki,Anmol Kumar Sharma,Vishakha Gautam,Pushpendra Singh Gahlot,Shiva Satija,Jeet Nanshi,Nikita Kapoor,Lavanya CB,Debarka Sengupta,P. Mehrotra,Tarini Shankar Ghosh,Gaurav Ahuja
出处
期刊:Nature Aging 卷期号:5 (1): 144-161 被引量:10
标识
DOI:10.1038/s43587-024-00763-4
摘要

Aging involves metabolic changes that lead to reduced cellular fitness, yet the role of many metabolites in aging is unclear. Understanding the mechanisms of known geroprotective molecules reveals insights into metabolic networks regulating aging and aids in identifying additional geroprotectors. Here we present AgeXtend, an artificial intelligence (AI)-based multimodal geroprotector prediction platform that leverages bioactivity data of known geroprotectors. AgeXtend encompasses modules that predict geroprotective potential, assess toxicity and identify target proteins and potential mechanisms. We found that AgeXtend accurately identified the pro-longevity effects of known geroprotectors excluded from training data, such as metformin and taurine. Using AgeXtend, we screened ~1.1 billion compounds and identified numerous potential geroprotectors, which we validated using yeast and Caenorhabditis elegans lifespan assays, as well as exploring microbiome-derived metabolites. Finally, we evaluated endogenous metabolites predicted as senomodulators using senescence assays in human fibroblasts, highlighting AgeXtend's potential to reveal unidentified geroprotectors and provide insights into aging mechanisms. Arora et al. present AgeXtend, an explainable artificial intelligence-based platform that leverages bioactivity data to predict geroprotectors. They validate potential geroprotectors identified using this platform in yeast, worm and senescence assays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
曾经的秋寒完成签到,获得积分10
刚刚
1秒前
TN完成签到 ,获得积分10
1秒前
zhaoxuelian发布了新的文献求助10
2秒前
丘比特应助风和日丽采纳,获得10
2秒前
3秒前
NexusExplorer应助肥四采纳,获得10
3秒前
千空完成签到,获得积分10
3秒前
不做Aspirin发布了新的文献求助10
3秒前
艾雪完成签到,获得积分10
4秒前
jackma1发布了新的文献求助10
4秒前
敬之发布了新的文献求助10
4秒前
Jared应助Niki采纳,获得20
4秒前
企鹅发布了新的文献求助10
4秒前
优美茹妖发布了新的文献求助10
4秒前
qiuxiali123发布了新的文献求助10
5秒前
sunfield2014发布了新的文献求助10
6秒前
钟雨彤发布了新的文献求助10
6秒前
老大蒂亚戈完成签到,获得积分0
6秒前
7秒前
7秒前
千空发布了新的文献求助10
7秒前
Twonej举报量子星尘求助涉嫌违规
7秒前
7秒前
7秒前
7秒前
ding应助迷糊采纳,获得10
7秒前
林屿溪发布了新的文献求助10
8秒前
毛77发布了新的文献求助30
8秒前
8秒前
9秒前
武当张二丰完成签到,获得积分10
9秒前
小二郎应助落后的哈密瓜采纳,获得10
9秒前
1r完成签到,获得积分10
9秒前
顾矜应助艾雪采纳,获得10
10秒前
不想做实验完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
abcd发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719543
求助须知:如何正确求助?哪些是违规求助? 5256663
关于积分的说明 15288927
捐赠科研通 4869380
什么是DOI,文献DOI怎么找? 2614754
邀请新用户注册赠送积分活动 1564750
关于科研通互助平台的介绍 1521972