亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discovering geroprotectors through the explainable artificial intelligence-based platform AgeXtend

秀丽隐杆线虫 计算生物学 生物 衰老 细胞衰老 健康衰老 生物化学 遗传学 医学 基因 老年学 表型
作者
Sakshi Arora,Aayushi Mittal,Subhadeep Duari,Sonam Chauhan,Nilesh Kumar Dixit,Sanjay Kumar Mohanty,Arushi Sharma,Saveena Solanki,Anmol Kumar Sharma,Vishakha Gautam,Pushpendra Singh Gahlot,Shiva Satija,Jeet Nanshi,Nikita Kapoor,Lavanya CB,Debarka Sengupta,P. Mehrotra,Tarini Shankar Ghosh,Gaurav Ahuja
出处
期刊:Nature Aging 卷期号:5 (1): 144-161 被引量:10
标识
DOI:10.1038/s43587-024-00763-4
摘要

Aging involves metabolic changes that lead to reduced cellular fitness, yet the role of many metabolites in aging is unclear. Understanding the mechanisms of known geroprotective molecules reveals insights into metabolic networks regulating aging and aids in identifying additional geroprotectors. Here we present AgeXtend, an artificial intelligence (AI)-based multimodal geroprotector prediction platform that leverages bioactivity data of known geroprotectors. AgeXtend encompasses modules that predict geroprotective potential, assess toxicity and identify target proteins and potential mechanisms. We found that AgeXtend accurately identified the pro-longevity effects of known geroprotectors excluded from training data, such as metformin and taurine. Using AgeXtend, we screened ~1.1 billion compounds and identified numerous potential geroprotectors, which we validated using yeast and Caenorhabditis elegans lifespan assays, as well as exploring microbiome-derived metabolites. Finally, we evaluated endogenous metabolites predicted as senomodulators using senescence assays in human fibroblasts, highlighting AgeXtend's potential to reveal unidentified geroprotectors and provide insights into aging mechanisms. Arora et al. present AgeXtend, an explainable artificial intelligence-based platform that leverages bioactivity data to predict geroprotectors. They validate potential geroprotectors identified using this platform in yeast, worm and senescence assays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
就叫希望吧完成签到 ,获得积分10
32秒前
桃子e发布了新的文献求助10
37秒前
39秒前
44秒前
栀鸢发布了新的文献求助10
50秒前
57秒前
violet完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
violet关注了科研通微信公众号
1分钟前
研友_VZG7GZ应助九月采纳,获得10
1分钟前
1分钟前
18651603532发布了新的文献求助10
1分钟前
JamesPei应助长情胡萝卜采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得30
1分钟前
劉浏琉应助科研通管家采纳,获得10
1分钟前
轻松大王应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
劉浏琉应助科研通管家采纳,获得10
1分钟前
1分钟前
qing发布了新的文献求助10
1分钟前
1分钟前
1分钟前
无有山发布了新的文献求助10
1分钟前
1分钟前
fangjc1024发布了新的文献求助10
1分钟前
阿鑫发布了新的文献求助10
1分钟前
1分钟前
852应助栀鸢采纳,获得10
1分钟前
fangjc1024完成签到,获得积分10
1分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788381
求助须知:如何正确求助?哪些是违规求助? 5706772
关于积分的说明 15473474
捐赠科研通 4916463
什么是DOI,文献DOI怎么找? 2646349
邀请新用户注册赠送积分活动 1594016
关于科研通互助平台的介绍 1548447