Discovering geroprotectors through the explainable artificial intelligence-based platform AgeXtend

秀丽隐杆线虫 计算生物学 生物 衰老 细胞衰老 健康衰老 生物化学 遗传学 医学 基因 老年学 表型
作者
Sakshi Arora,Aayushi Mittal,Subhadeep Duari,Sonam Chauhan,Nilesh Kumar Dixit,Sanjay Kumar Mohanty,Arushi Sharma,Saveena Solanki,A. Sharma,Vishakha Gautam,Pushpendra Singh Gahlot,Shiva Satija,Jeet Nanshi,Nikita Kapoor,Lavanya CB,Debarka Sengupta,P. Mehrotra,Tarini Shankar Ghosh,Gaurav Ahuja
出处
期刊:Nature Aging 卷期号:5 (1): 144-161 被引量:10
标识
DOI:10.1038/s43587-024-00763-4
摘要

Aging involves metabolic changes that lead to reduced cellular fitness, yet the role of many metabolites in aging is unclear. Understanding the mechanisms of known geroprotective molecules reveals insights into metabolic networks regulating aging and aids in identifying additional geroprotectors. Here we present AgeXtend, an artificial intelligence (AI)-based multimodal geroprotector prediction platform that leverages bioactivity data of known geroprotectors. AgeXtend encompasses modules that predict geroprotective potential, assess toxicity and identify target proteins and potential mechanisms. We found that AgeXtend accurately identified the pro-longevity effects of known geroprotectors excluded from training data, such as metformin and taurine. Using AgeXtend, we screened ~1.1 billion compounds and identified numerous potential geroprotectors, which we validated using yeast and Caenorhabditis elegans lifespan assays, as well as exploring microbiome-derived metabolites. Finally, we evaluated endogenous metabolites predicted as senomodulators using senescence assays in human fibroblasts, highlighting AgeXtend's potential to reveal unidentified geroprotectors and provide insights into aging mechanisms. Arora et al. present AgeXtend, an explainable artificial intelligence-based platform that leverages bioactivity data to predict geroprotectors. They validate potential geroprotectors identified using this platform in yeast, worm and senescence assays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得30
1秒前
呆萌芙蓉发布了新的文献求助10
1秒前
1秒前
1秒前
可乐加糖完成签到,获得积分10
1秒前
安静的迎荷完成签到,获得积分10
2秒前
打打应助lijun采纳,获得10
2秒前
qda发布了新的文献求助10
3秒前
moyv25发布了新的文献求助10
3秒前
3秒前
lesyeuxdexx完成签到 ,获得积分10
3秒前
4秒前
aspen完成签到,获得积分20
4秒前
4秒前
酷波er应助nazure采纳,获得10
4秒前
番番完成签到,获得积分10
4秒前
6秒前
小马甲应助阳佟仇天采纳,获得10
6秒前
fuguiliu发布了新的文献求助10
7秒前
7秒前
星辰大海应助qiuqiuqiu采纳,获得10
7秒前
8秒前
添添发布了新的文献求助10
8秒前
9秒前
科研通AI6应助qda采纳,获得30
9秒前
冫氵发布了新的文献求助10
9秒前
小二郎应助ycx采纳,获得30
9秒前
多米发布了新的文献求助10
10秒前
迷路的孤菱关注了科研通微信公众号
10秒前
SciGPT应助齐齐采纳,获得10
10秒前
qzh发布了新的文献求助10
11秒前
科研通AI6应助laowaikuan采纳,获得10
11秒前
11秒前
11秒前
日月完成签到,获得积分10
11秒前
乐乐应助甜蜜涵梅采纳,获得10
11秒前
11秒前
瓜瓜发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329525
求助须知:如何正确求助?哪些是违规求助? 4469070
关于积分的说明 13907915
捐赠科研通 4362170
什么是DOI,文献DOI怎么找? 2396235
邀请新用户注册赠送积分活动 1389597
关于科研通互助平台的介绍 1360467