Discovering geroprotectors through the explainable artificial intelligence-based platform AgeXtend

秀丽隐杆线虫 计算生物学 生物 衰老 细胞衰老 健康衰老 生物化学 遗传学 医学 基因 老年学 表型
作者
Sakshi Arora,Aayushi Mittal,Subhadeep Duari,Sonam Chauhan,Nilesh Kumar Dixit,Sanjay Kumar Mohanty,Arushi Sharma,Saveena Solanki,A. Sharma,Vishakha Gautam,Pushpendra Singh Gahlot,Shiva Satija,Jeet Nanshi,Nikita Kapoor,Lavanya CB,Debarka Sengupta,P. Mehrotra,Tarini Shankar Ghosh,Gaurav Ahuja
出处
期刊:Nature Aging 被引量:7
标识
DOI:10.1038/s43587-024-00763-4
摘要

Aging involves metabolic changes that lead to reduced cellular fitness, yet the role of many metabolites in aging is unclear. Understanding the mechanisms of known geroprotective molecules reveals insights into metabolic networks regulating aging and aids in identifying additional geroprotectors. Here we present AgeXtend, an artificial intelligence (AI)-based multimodal geroprotector prediction platform that leverages bioactivity data of known geroprotectors. AgeXtend encompasses modules that predict geroprotective potential, assess toxicity and identify target proteins and potential mechanisms. We found that AgeXtend accurately identified the pro-longevity effects of known geroprotectors excluded from training data, such as metformin and taurine. Using AgeXtend, we screened ~1.1 billion compounds and identified numerous potential geroprotectors, which we validated using yeast and Caenorhabditis elegans lifespan assays, as well as exploring microbiome-derived metabolites. Finally, we evaluated endogenous metabolites predicted as senomodulators using senescence assays in human fibroblasts, highlighting AgeXtend's potential to reveal unidentified geroprotectors and provide insights into aging mechanisms. Arora et al. present AgeXtend, an explainable artificial intelligence-based platform that leverages bioactivity data to predict geroprotectors. They validate potential geroprotectors identified using this platform in yeast, worm and senescence assays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gotyababy发布了新的文献求助10
刚刚
Yolo完成签到,获得积分10
刚刚
刚刚
Kenny发布了新的文献求助10
刚刚
刚刚
哪吒完成签到,获得积分20
刚刚
123466关注了科研通微信公众号
1秒前
oneday发布了新的文献求助10
1秒前
JIAYIWANG完成签到,获得积分20
1秒前
一直找不到文献完成签到 ,获得积分20
1秒前
量子星尘发布了新的文献求助10
2秒前
DrY发布了新的文献求助10
2秒前
123发布了新的文献求助10
3秒前
3秒前
领导范儿应助纪秋采纳,获得10
3秒前
小白一号完成签到,获得积分10
3秒前
3秒前
4秒前
赵卓发布了新的文献求助10
4秒前
高源完成签到,获得积分20
5秒前
好运来发发发完成签到,获得积分10
5秒前
Jasper应助7_蜗牛采纳,获得10
5秒前
充电宝应助机智的寒天采纳,获得10
5秒前
6秒前
wss发布了新的文献求助10
6秒前
华仔应助秧秧采纳,获得10
6秒前
beenest完成签到,获得积分10
7秒前
Dr.zhong发布了新的文献求助10
7秒前
7秒前
8秒前
鲸鱼发布了新的文献求助10
8秒前
长情的尔蓝完成签到,获得积分10
9秒前
9秒前
心灵美诗霜完成签到,获得积分10
9秒前
江鑫楷完成签到,获得积分20
9秒前
万能图书馆应助乖乖采纳,获得10
9秒前
CipherSage应助wss采纳,获得10
10秒前
lyf完成签到,获得积分10
11秒前
刘子寒发布了新的文献求助10
11秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559