Strategic Integration of Machine Learning in the Design of Excellent Hybrid Perovskite Solar Cells

邻接矩阵 人工智能 机器学习 计算机科学 卷积神经网络 钙钛矿(结构) 深度学习 基质(化学分析) 算法 材料科学 图形 化学 理论计算机科学 复合材料 结晶学
作者
Zhaosheng Zhang,Sijia Liu,Qing Xiong,Yanbo Liu
出处
期刊:Journal of Physical Chemistry Letters [American Chemical Society]
卷期号:: 738-746
标识
DOI:10.1021/acs.jpclett.4c03580
摘要

The photoelectric conversion efficiency (PCE) of perovskites remains beneath the Shockley-Queisser limit, despite its significant potential for solar cell applications. The present focus is on investigating potential multicomponent perovskite candidates, particularly on the application of machine learning to expedite band gap screening. To efficiently identify high-performance perovskites, we utilized a data set of 1346 hybrid organic–inorganic perovskites and employed 11 machine learning models, including decision trees, convolutional neural networks (CNNs), and graph neural networks (GNNs). Four descriptors were utilized for high-throughput screening: sine matrix, Ewald sum matrix, atom-centered symmetry functions (ACSF), and many-body tensor representation (MBTR). The results indicated that LightGBM and CatBoost somewhat surpassed XGBoost in decision tree models, but random forests lagged. Among the CNN models utilizing the same four descriptors, CustomCNN and VGG16 surpassed Xception, while EfficientNetV2B0 exhibited the least favorable performance. When the sine matrix and Ewald sum matrix served as adjacency matrices in GNN models, GCSConv exhibited a considerable improvement over GATConv and a slight advantage over GCNConv. Significantly, GCSConv outperformed other models when utilized with the Ewald sum matrix. The ideal combination of descriptors and algorithms identified was MBTR + CustomCNN, with an R2 of 0.94. Subsequently, three perovskites exhibiting appropriate Heyd–Scuseria–Ernzerhof (HSE06) band gaps were identified to define the defects. Among them, CH3C(NH2)2SnI3 exhibited superior performance in both vacancy and substitutional defects compared to C3H8NSnI3 and (CH3)2NH2SnI3. This high-throughput screening method with machine learning establishes a robust foundation for selecting solar materials with exceptional photoelectric properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助南桑采纳,获得10
刚刚
乜呆呆.发布了新的文献求助500
1秒前
1秒前
2秒前
江好景完成签到 ,获得积分10
3秒前
emmaguo713发布了新的文献求助10
3秒前
kyt发布了新的文献求助10
3秒前
4秒前
壮观问寒发布了新的文献求助10
5秒前
研友_85Y5z8发布了新的文献求助20
6秒前
当道不发布了新的文献求助10
7秒前
8秒前
Lucas应助高兴吐司采纳,获得10
8秒前
思源应助Mason采纳,获得10
8秒前
李佳唯完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
12秒前
13秒前
wood233完成签到,获得积分10
13秒前
13秒前
14秒前
knight0524完成签到,获得积分10
14秒前
14秒前
15秒前
超级七七完成签到 ,获得积分10
15秒前
16秒前
喜滋滋发布了新的文献求助10
16秒前
勤恳的不悔完成签到,获得积分20
16秒前
Wby发布了新的文献求助100
17秒前
斯文败类应助周周采纳,获得10
17秒前
科研通AI5应助super chan采纳,获得10
18秒前
顺利萃发布了新的文献求助10
19秒前
好久不见发布了新的文献求助10
19秒前
高兴吐司发布了新的文献求助10
20秒前
陈育晗完成签到,获得积分10
20秒前
方1111完成签到,获得积分10
22秒前
梅槿完成签到 ,获得积分10
22秒前
orixero应助知性的采珊采纳,获得10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728739
求助须知:如何正确求助?哪些是违规求助? 3273707
关于积分的说明 9983290
捐赠科研通 2989059
什么是DOI,文献DOI怎么找? 1640133
邀请新用户注册赠送积分活动 779085
科研通“疑难数据库(出版商)”最低求助积分说明 747961