已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning-Assisted “Shrink-Restricted” SERS Strategy for Classification of Environmental Nanoplastic-Induced Cell Death

计算机科学 人工智能 生化工程 工程类 可靠性工程 环境科学
作者
Ruili Li,Xiaotong Sun,Yuyang Hu,Shenghong Liu,Shu-Ting Huang,Zhipeng Zhang,Kecen Chen,Qi Liu,Xiaoqing Chen
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c05590
摘要

The biotoxicity of nanoplastics (NPs), especially from environmental sources, and "NPs carrier effect" are in the early stages of research. This study presents a machine learning-assisted "shrink-restricted" SERS strategy (SRSS) to monitor molecular changes in the cellular secretome exposure to six types of NPs. Utilizing three-dimensional (3D) Ag@hydrogel-based SRSS, active targeting of molecules within adjustable nanogaps was achieved to track information. Machine learning was employed to analyze the overall spectral profiles, biochemical signatures, and time-dependent changes. Results indicate that environmentally derived NPs exhibited higher toxicity to BEAS-2B and L02 cells. Notably, the "NPs carrier effect," resulting from pollutant adsorption, proved to be more harmful. This effect altered the death pathway of BEAS-2B cells from a combination of apoptosis and ferroptosis to primarily ferroptosis. Furthermore, L02 cells demonstrated greater metabolic vulnerability to NPs exposure than that of BEAS-2B cells, especially concerning the "NPs carrier effect." Traditional detection methods for cell death often rely on end point assays, which limit temporal resolution and focus on single or multiple markers. In contrast, our study pioneers a machine learning-assisted SERS approach for monitoring overall metabolic levels post-NPs exposure at both cellular and molecular levels. This endeavor has significantly advanced our understanding of the risks associated with plastic pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素的不乐完成签到 ,获得积分10
刚刚
1秒前
orixero应助典雅的诗兰采纳,获得10
6秒前
老王发布了新的文献求助10
11秒前
11秒前
11秒前
yx_cheng应助科研Stitch采纳,获得30
14秒前
筱谭完成签到 ,获得积分10
15秒前
小胡萝白发布了新的文献求助10
17秒前
任性静祝完成签到 ,获得积分10
19秒前
可爱的函函应助xiaojian_291采纳,获得10
20秒前
酷波er应助小胡萝白采纳,获得10
22秒前
英俊的铭应助数据线采纳,获得10
24秒前
13发布了新的文献求助30
29秒前
温智鹏关注了科研通微信公众号
42秒前
小姚姚完成签到,获得积分10
43秒前
桐桐应助livialiu采纳,获得10
45秒前
46秒前
46秒前
13发布了新的文献求助10
46秒前
NexusExplorer应助辣椒采纳,获得10
48秒前
明亮巨人完成签到 ,获得积分10
52秒前
52秒前
温智鹏发布了新的文献求助30
56秒前
瘦瘦的一江完成签到 ,获得积分10
57秒前
上官若男应助Chillym采纳,获得10
1分钟前
13完成签到,获得积分10
1分钟前
yx_cheng应助夜雨声烦采纳,获得10
1分钟前
哇呀呀完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
无语的诗柳完成签到 ,获得积分10
1分钟前
xu发布了新的文献求助10
1分钟前
ppg123应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
yx_cheng应助科研通管家采纳,获得50
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
ppg123应助科研通管家采纳,获得10
1分钟前
ppg123应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994886
求助须知:如何正确求助?哪些是违规求助? 3535036
关于积分的说明 11267028
捐赠科研通 3274824
什么是DOI,文献DOI怎么找? 1806478
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809762