Design of High‐Performance Infrared Nonlinear Optical PAs3S3 with Perfectly Aligned Polar Molecular Cage via a Bipolar‐Axis‐Symmetry Coupling Strategy

极地的 化学极性 笼子 材料科学 红外线的 分子对称性 对称(几何) 二次谐波产生 联轴节(管道) 共价键 化学物理 非线性光学 结晶学 光电子学 化学 分子 非线性系统 光学 物理 有机化学 激光器 数学 几何学 组合数学 天文 量子力学 冶金
作者
Yan Wang,Chensheng Lin,Xin Zhao,Shunda Yang,Tao Yan,Shenghao Fang,Lingli Wu,Ning Ye,Min Luo
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/anie.202421825
摘要

Strong polar molecular cages have recently emerged as novel functional building units for high‐performance infrared nonlinear optical (IR NLO) crystals. However, these highly polar molecular cages often arrange themselves in a way that cancels out their polarity, leading to a more energetically stable state. As a result, most cage crystal formations tend to crystallize in centrosymmetric space groups, which conflicts with the primary requirement for NLO crystals. Herein, we address the challenge of polar molecular cage arrangement through bipolar‐axis‐symmetry coupling strategy, utilizing classical NLO parent compounds. By substituting the C3v symmetric [B3O6] groups with polar C3v symmetric [PAs3S3] cages within the β‐BBO polar aixs lattice, we successfully synthesized a new compound, PAs3S3 (PAS), which exhibits a consistent arrangement of polar molecular cages—crucial for maximizing NLO performance. Additionally, due to the non‐covalent interactions among [PAs3S3] polar molecular cages, PAS demonstrates an unexpectedly strong second harmonic generation (SHG) about 8 times that of AgGaS2, along with a significant bandgap of 2.75 eV. Furthermore, PAS exhibits remarkable stability against air and moisture. These findings validate our design strategy and position PAS as a promising candidate for applications in IR NLO crystals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助愉快的定帮采纳,获得10
刚刚
科目三应助自由刺猬采纳,获得20
1秒前
futing完成签到,获得积分10
1秒前
老鼠爱吃fish完成签到,获得积分10
1秒前
xiaoou完成签到,获得积分10
1秒前
科研通AI2S应助VDC采纳,获得10
2秒前
2秒前
胡天萌完成签到 ,获得积分10
2秒前
正义的小怪兽完成签到,获得积分20
2秒前
wanci应助刘星星采纳,获得10
2秒前
完美世界应助jekyll采纳,获得10
3秒前
自然怀梦完成签到,获得积分10
3秒前
3秒前
neo完成签到,获得积分10
4秒前
完美世界应助lyn采纳,获得30
4秒前
情怀应助Jackcaosky采纳,获得200
4秒前
123发布了新的文献求助10
4秒前
buno应助hhh采纳,获得10
5秒前
SYLH应助wltwb采纳,获得10
5秒前
Rui发布了新的文献求助10
5秒前
斯文败类应助快乐小文采纳,获得30
5秒前
7秒前
尹天扬完成签到,获得积分10
8秒前
8秒前
大方大船完成签到,获得积分10
9秒前
Sigyn完成签到,获得积分10
9秒前
顺利琦发布了新的文献求助10
9秒前
9秒前
自由完成签到,获得积分20
10秒前
Volta_zz完成签到,获得积分10
10秒前
10秒前
欣欣子完成签到,获得积分10
11秒前
12秒前
111完成签到 ,获得积分10
12秒前
12秒前
柔弱煎饼发布了新的文献求助30
13秒前
13秒前
曹梦梦完成签到,获得积分10
13秒前
13秒前
风趣霆完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678