数学
独特性
巴拿赫空间
收缩原理
建设性的
非线性系统
数学分析
初值问题
收缩(语法)
收缩映射
分数阶微积分
微分方程
新颖性
应用数学
纯数学
不动点定理
医学
哲学
物理
神学
过程(计算)
量子力学
计算机科学
内科学
操作系统
作者
Kiran Kumar Saha,N. Sukavanam
摘要
ABSTRACT This paper deals with nonlocal initial value problems (IVPs) for modified Caputo fractional differential equations (FDEs) of order . The novelty of this work is that the nonlinearity is considered in spaces, where , instead of the conventional space of continuous functions. In each scenario, we meticulously derive the equivalences between the FDEs and the corresponding integral equations in the spaces of interest. Several new existence and uniqueness results based on the Banach contraction principle are established, imposing weaker assumptions on the data as much as possible. To exemplify our main results, we present three constructive examples, together with their corresponding unique solution trajectories.
科研通智能强力驱动
Strongly Powered by AbleSci AI