Diets composed of chemically pure components (holidic diets) are useful for determining the metabolic roles of individual nutrients. For the model organism Drosophila melanogaster, existing holidic diets are unable to support the rapid growth characteristic of the larval stage. Here, we use a nutrient co-optimization strategy across more than 50 diet variants to design a holidic diet for fast development (HolFast), a holidic medium tailored for fast larval growth and development. We identify dietary amino acid ratios optimal for developmental speed but show that they compromise survival unless vitamins and sterols are co-optimized. Rapid development on HolFast is not improved by adding fatty acids, but it is dependent upon their de novo synthesis in the fat body via fatty acid synthase (FASN). HolFast outperforms other holidic diets, supporting rates of growth and development close to those of yeast-based diets and, under germ-free conditions, identical. HolFast has wide applications in nutritional and metabolic studies of Drosophila development.