心理健康
人工智能
系统回顾
心理学
计算机科学
应用心理学
数据科学
梅德林
精神科
政治学
法学
作者
Jamin Patel,Chih-Ching Hung,Tarun Reddy Katapally
标识
DOI:10.1016/j.psychres.2024.116277
摘要
The youth mental health crisis is exacerbated by limited access to care and resources. Mobile health (mHealth) platforms using predictive artificial intelligence (AI) can improve access and reduce barriers, enabling real-time responses and precision prevention. This systematic review evaluates predictive AI approaches in mHealth platforms for forecasting mental health symptoms among youth (13-25 years). We searched studies from Embase, PubMed, Web of Science, PsycInfo, and CENTRAL, to identify relevant studies. From 11 studies identified, three studies predicted multiple symptoms, with depression being the most common (63%). Most platforms used smartphones and 25% integrated wearables. Key predictors included smartphone usage (N=5), sleep metrics (N=6), and physical activity (N=5). Nuanced predictors like usage locations and sleep stages improved prediction. Logistic regression was most used (N=6), followed by Support Vector Machines (N=3) and ensemble methods (N=4). F-scores for anxiety and depression ranged from 0.73 to 0.84, and AUCs from 0.50 to 0.74. Stress models had AUCs of 0.68 to 0.83. Bayesian model selection and Shapley values enhanced robustness and interpretability. Barriers included small sample sizes, privacy concerns, missing data, and underrepresentation bias. Rigorous evaluation of predictive performance, generalizability, and user engagement is critical before mHealth platforms are integrated into psychiatric care.
科研通智能强力驱动
Strongly Powered by AbleSci AI