Intelligent Identification of Formation Lithology While Drilling

鉴定(生物学) 钻探 岩性 计算机科学 地质学 岩石学 工程类 机械工程 植物 生物
作者
Chuan Peng,H. L. Zhang,Jinxia Fu,Qingfeng Li,J. Li,Bowen Zhu,Jianping Peng,Huairuo Zhang
标识
DOI:10.2523/iptc-24708-ms
摘要

Abstract During drilling engineering, the rate of penetration (ROP) is the basic index to measure the drill ability of various rocks, and drilling parameters are the main control factors that affect the ROP. Identifying formation lithology while drilling can promptly adjust drilling parameters and effectively improve drilling efficiency. In this paper, drilling parameters and intelligent models are combined to realize formation lithology identification while drilling. Different from previous research, this method uses K-means, Fuzzy C-means (FCM), and Mean Shift algorithms to cluster the data set after dimension reduction, uses support vector machine (SVM), random forests (RF), and extremely randomized trees (ET) algorithms to train multiple models to identify formation lithology according to the clustering results, and analyzes the identification accuracy of the models under different combinations of dimension reduction and clustering methods. The results indicate that: 1) without clustering, the accuracy of the model in identifying formation lithology is poor, and the final identification result is biased towards one or two types of lithology; 2) the linear kernel function is the best among the three kernel functions, and the classification results lead to high accuracy in identifying lithology. The classification results of the Gaussian kernel function and polynomial kernel function are biased towards a certain kind of lithology; 3) in the multi-model of linear kernel function + K-Means + SVM, the identification accuracies of sandstone, mudstone, limestone, and shale are 60%, 80%, 70%, and 90% respectively, with an average identification accuracy of 82.5%. This paper puts forward a method for identifying formation lithology while drilling by combining drilling parameters and intelligent models, and takes the YX block as an example to carry out application test. The results show that this method can effectively improve the accuracy of lithology identification while drilling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
HAN完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
2秒前
2秒前
2秒前
务实黄豆完成签到,获得积分10
2秒前
Simba完成签到,获得积分10
2秒前
神勇的萱萱完成签到,获得积分10
3秒前
科研小白完成签到,获得积分10
3秒前
安恋雨完成签到,获得积分10
3秒前
4秒前
Simba发布了新的文献求助10
5秒前
KYY完成签到,获得积分10
6秒前
6秒前
7秒前
bbbbb发布了新的文献求助10
7秒前
7秒前
一阳完成签到,获得积分10
7秒前
任笑白完成签到 ,获得积分10
8秒前
8秒前
qiqibaby发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
咋还发布了新的文献求助10
12秒前
12秒前
arcgen发布了新的文献求助10
13秒前
weiyongswust完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助10
13秒前
HF发布了新的文献求助10
13秒前
终抵星空完成签到,获得积分10
14秒前
14秒前
14秒前
大魔王发布了新的文献求助10
15秒前
鹤七完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569810
求助须知:如何正确求助?哪些是违规求助? 4655144
关于积分的说明 14710842
捐赠科研通 4596139
什么是DOI,文献DOI怎么找? 2522284
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1464032