亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Identification of Formation Lithology While Drilling

鉴定(生物学) 钻探 岩性 计算机科学 地质学 岩石学 工程类 机械工程 植物 生物
作者
Chuan Peng,H. L. Zhang,Jinxia Fu,Qingfeng Li,J. Li,Bowen Zhu,Jianping Peng,Huairuo Zhang
标识
DOI:10.2523/iptc-24708-ms
摘要

Abstract During drilling engineering, the rate of penetration (ROP) is the basic index to measure the drill ability of various rocks, and drilling parameters are the main control factors that affect the ROP. Identifying formation lithology while drilling can promptly adjust drilling parameters and effectively improve drilling efficiency. In this paper, drilling parameters and intelligent models are combined to realize formation lithology identification while drilling. Different from previous research, this method uses K-means, Fuzzy C-means (FCM), and Mean Shift algorithms to cluster the data set after dimension reduction, uses support vector machine (SVM), random forests (RF), and extremely randomized trees (ET) algorithms to train multiple models to identify formation lithology according to the clustering results, and analyzes the identification accuracy of the models under different combinations of dimension reduction and clustering methods. The results indicate that: 1) without clustering, the accuracy of the model in identifying formation lithology is poor, and the final identification result is biased towards one or two types of lithology; 2) the linear kernel function is the best among the three kernel functions, and the classification results lead to high accuracy in identifying lithology. The classification results of the Gaussian kernel function and polynomial kernel function are biased towards a certain kind of lithology; 3) in the multi-model of linear kernel function + K-Means + SVM, the identification accuracies of sandstone, mudstone, limestone, and shale are 60%, 80%, 70%, and 90% respectively, with an average identification accuracy of 82.5%. This paper puts forward a method for identifying formation lithology while drilling by combining drilling parameters and intelligent models, and takes the YX block as an example to carry out application test. The results show that this method can effectively improve the accuracy of lithology identification while drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助朱问安采纳,获得30
刚刚
傲娇泥猴桃完成签到 ,获得积分10
2秒前
zl13332完成签到 ,获得积分10
3秒前
Unicorn完成签到,获得积分10
7秒前
111111111完成签到,获得积分10
8秒前
扯不开的封口膜完成签到,获得积分10
8秒前
12秒前
单薄怜寒完成签到 ,获得积分10
13秒前
14秒前
朱文韬发布了新的文献求助10
18秒前
传奇3应助虚心怜阳采纳,获得10
26秒前
30秒前
礼岁岁完成签到 ,获得积分10
32秒前
朱问安发布了新的文献求助30
37秒前
yuwen发布了新的文献求助10
37秒前
搜集达人应助呼斯冷采纳,获得10
44秒前
51秒前
朱问安完成签到,获得积分10
51秒前
寻风发布了新的文献求助10
56秒前
57秒前
Jessie完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
寻风完成签到,获得积分10
1分钟前
呼斯冷发布了新的文献求助10
1分钟前
1分钟前
1分钟前
FIGGIEKIO发布了新的文献求助10
1分钟前
东风完成签到,获得积分10
1分钟前
搜集达人应助nnn7采纳,获得10
1分钟前
CodeCraft应助重要的夏烟采纳,获得10
1分钟前
1分钟前
呼斯冷完成签到,获得积分20
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
波波完成签到 ,获得积分10
1分钟前
redamancy完成签到 ,获得积分10
1分钟前
Jasper应助chenhua5460采纳,获得10
1分钟前
FIGGIEKIO完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968293
求助须知:如何正确求助?哪些是违规求助? 3513220
关于积分的说明 11166815
捐赠科研通 3248470
什么是DOI,文献DOI怎么找? 1794249
邀请新用户注册赠送积分活动 874956
科研通“疑难数据库(出版商)”最低求助积分说明 804629