已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent Identification of Formation Lithology While Drilling

鉴定(生物学) 钻探 岩性 计算机科学 地质学 岩石学 工程类 机械工程 植物 生物
作者
Chuan Peng,H. L. Zhang,Jinxia Fu,Qingfeng Li,J. Li,Bowen Zhu,Jianping Peng,Huairuo Zhang
标识
DOI:10.2523/iptc-24708-ms
摘要

Abstract During drilling engineering, the rate of penetration (ROP) is the basic index to measure the drill ability of various rocks, and drilling parameters are the main control factors that affect the ROP. Identifying formation lithology while drilling can promptly adjust drilling parameters and effectively improve drilling efficiency. In this paper, drilling parameters and intelligent models are combined to realize formation lithology identification while drilling. Different from previous research, this method uses K-means, Fuzzy C-means (FCM), and Mean Shift algorithms to cluster the data set after dimension reduction, uses support vector machine (SVM), random forests (RF), and extremely randomized trees (ET) algorithms to train multiple models to identify formation lithology according to the clustering results, and analyzes the identification accuracy of the models under different combinations of dimension reduction and clustering methods. The results indicate that: 1) without clustering, the accuracy of the model in identifying formation lithology is poor, and the final identification result is biased towards one or two types of lithology; 2) the linear kernel function is the best among the three kernel functions, and the classification results lead to high accuracy in identifying lithology. The classification results of the Gaussian kernel function and polynomial kernel function are biased towards a certain kind of lithology; 3) in the multi-model of linear kernel function + K-Means + SVM, the identification accuracies of sandstone, mudstone, limestone, and shale are 60%, 80%, 70%, and 90% respectively, with an average identification accuracy of 82.5%. This paper puts forward a method for identifying formation lithology while drilling by combining drilling parameters and intelligent models, and takes the YX block as an example to carry out application test. The results show that this method can effectively improve the accuracy of lithology identification while drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
杨然完成签到 ,获得积分10
4秒前
斯文败类应助ceeray23采纳,获得111
5秒前
6秒前
张迪发布了新的文献求助10
6秒前
7秒前
日升月发布了新的文献求助10
9秒前
柇素完成签到,获得积分10
9秒前
乐乐完成签到,获得积分10
10秒前
上官若男应助游戏人间采纳,获得10
11秒前
尊敬乐蕊发布了新的文献求助20
11秒前
虚幻乘云发布了新的文献求助10
11秒前
森西完成签到,获得积分10
12秒前
FashionBoy应助zyw采纳,获得10
12秒前
科研达人发布了新的文献求助10
15秒前
18秒前
GUGU发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
六角发布了新的文献求助10
21秒前
严汲完成签到 ,获得积分10
24秒前
24秒前
Ghiocel发布了新的文献求助30
24秒前
lll完成签到,获得积分10
26秒前
zyw发布了新的文献求助10
26秒前
YL完成签到,获得积分10
27秒前
27秒前
28秒前
六角完成签到,获得积分10
29秒前
飞飞发布了新的文献求助10
30秒前
领导范儿应助feng采纳,获得10
31秒前
虚心完成签到 ,获得积分10
31秒前
31秒前
pluto应助iNk采纳,获得10
31秒前
33秒前
科研通AI2S应助迅速的丑采纳,获得10
33秒前
幽默不愁发布了新的文献求助10
33秒前
达叔完成签到,获得积分10
35秒前
gaogao完成签到 ,获得积分10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466610
求助须知:如何正确求助?哪些是违规求助? 3059468
关于积分的说明 9066340
捐赠科研通 2749950
什么是DOI,文献DOI怎么找? 1508779
科研通“疑难数据库(出版商)”最低求助积分说明 697059
邀请新用户注册赠送积分活动 696883