Intelligent Identification of Formation Lithology While Drilling

鉴定(生物学) 钻探 岩性 计算机科学 地质学 岩石学 工程类 机械工程 植物 生物
作者
Chuan Peng,H. L. Zhang,Jinxia Fu,Qingfeng Li,J. Li,Bowen Zhu,Jianping Peng,Huairuo Zhang
标识
DOI:10.2523/iptc-24708-ms
摘要

Abstract During drilling engineering, the rate of penetration (ROP) is the basic index to measure the drill ability of various rocks, and drilling parameters are the main control factors that affect the ROP. Identifying formation lithology while drilling can promptly adjust drilling parameters and effectively improve drilling efficiency. In this paper, drilling parameters and intelligent models are combined to realize formation lithology identification while drilling. Different from previous research, this method uses K-means, Fuzzy C-means (FCM), and Mean Shift algorithms to cluster the data set after dimension reduction, uses support vector machine (SVM), random forests (RF), and extremely randomized trees (ET) algorithms to train multiple models to identify formation lithology according to the clustering results, and analyzes the identification accuracy of the models under different combinations of dimension reduction and clustering methods. The results indicate that: 1) without clustering, the accuracy of the model in identifying formation lithology is poor, and the final identification result is biased towards one or two types of lithology; 2) the linear kernel function is the best among the three kernel functions, and the classification results lead to high accuracy in identifying lithology. The classification results of the Gaussian kernel function and polynomial kernel function are biased towards a certain kind of lithology; 3) in the multi-model of linear kernel function + K-Means + SVM, the identification accuracies of sandstone, mudstone, limestone, and shale are 60%, 80%, 70%, and 90% respectively, with an average identification accuracy of 82.5%. This paper puts forward a method for identifying formation lithology while drilling by combining drilling parameters and intelligent models, and takes the YX block as an example to carry out application test. The results show that this method can effectively improve the accuracy of lithology identification while drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
丰富的鞅完成签到,获得积分10
2秒前
2秒前
户学静发布了新的文献求助10
2秒前
自然的凝冬应助ljz910005采纳,获得20
2秒前
3秒前
3秒前
3秒前
QAINNNNN完成签到,获得积分20
3秒前
时尚浩轩完成签到 ,获得积分10
3秒前
King16完成签到,获得积分10
3秒前
兰彻发布了新的文献求助10
3秒前
sfwrbh完成签到,获得积分10
4秒前
在水一方应助开心金毛采纳,获得10
4秒前
5秒前
5秒前
爆米花应助naplzp采纳,获得20
6秒前
6秒前
sfwrbh发布了新的文献求助10
7秒前
徐昊雯发布了新的文献求助10
7秒前
科研通AI2S应助wxy采纳,获得10
7秒前
mutong发布了新的文献求助10
7秒前
lx完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助50
8秒前
8秒前
ze发布了新的文献求助10
8秒前
慕子默发布了新的文献求助20
8秒前
9秒前
9秒前
甜美鬼神发布了新的文献求助10
9秒前
9秒前
飘逸凝丝发布了新的文献求助10
9秒前
昱旻发布了新的文献求助10
9秒前
lxyy应助西大喜采纳,获得10
10秒前
夜雨潇潇完成签到,获得积分10
10秒前
10秒前
ly发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437