亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Educational Technology Based on Data Mining: Mining Student Behavior Patterns to Optimize Teaching Strategies

计算机科学 数据挖掘 数据科学 工程类 数学教育 心理学
作者
X. Sun
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425401019
摘要

Data mining (DM) approaches have been applied in the field of Educational Data Mining (EDM) to obtain the important insights about student preferences and behaviors. By using a variety of strategies to increase the effectiveness of e-learning environments, the design aims to enhance learning processes by forecasting the traits of students. Academic data can be used to study trends in student behavior using a selection of DM, such as grouping, classification, and forecasting. This study presents a novel approach to learning behaviors prediction in the Chaotic-Tuned Shuffled Frog Leaping Optimized Random Forest (CSFLO-RF). The CSFLO technique, which accelerates the global convergence of the traditional SFLO technique, improves the accuracy of RF categorization in the suggested methodology. The K-Means Clustering (KMC) methodology uses the student behavior patterns recorded in the log record to group learners into specific categories based on their e-learning system usage. The generated clusters were allocated multiple learning styles based on the framework for learning styles. Following that, the specified behaviors were employed as input for the proposed CSFLO-RF classification to evaluate the degree to predict the students’ learning behavior. According to the results of the suggested technique, which is implemented to utilize the Weka platform, the CSFLO-RF approach yielded more successful outcomes than other existing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助丑陋的名字采纳,获得30
1秒前
Charon完成签到,获得积分10
2秒前
14秒前
19秒前
28秒前
一一完成签到 ,获得积分10
31秒前
33秒前
laura完成签到,获得积分10
34秒前
35秒前
38秒前
爆米花应助留胡子的邑采纳,获得10
40秒前
40秒前
43秒前
影子完成签到,获得积分20
44秒前
1分钟前
1分钟前
ding应助研友_Ze2V48采纳,获得10
1分钟前
赘婿应助ASXC采纳,获得10
1分钟前
Yesaniar发布了新的文献求助10
1分钟前
1分钟前
FashionBoy应助WANG.采纳,获得10
1分钟前
研友_Ze2V48发布了新的文献求助10
1分钟前
xiaowang完成签到,获得积分10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
研友_Ze2V48完成签到,获得积分10
1分钟前
欣喜的人龙完成签到 ,获得积分10
1分钟前
自觉的乌冬面应助hhhh采纳,获得10
1分钟前
1分钟前
1分钟前
桐桐应助Y-99采纳,获得10
1分钟前
雪崩完成签到,获得积分20
1分钟前
留胡子的邑完成签到,获得积分10
1分钟前
1分钟前
GGBoy完成签到 ,获得积分10
1分钟前
Hiraeth完成签到 ,获得积分10
1分钟前
在水一方应助雪崩采纳,获得10
2分钟前
2分钟前
黄耀完成签到,获得积分10
2分钟前
yo一天完成签到,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526513
求助须知:如何正确求助?哪些是违规求助? 3106951
关于积分的说明 9281929
捐赠科研通 2804456
什么是DOI,文献DOI怎么找? 1539468
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709554