A New Polyvinyl Alcohol Lithium Chloride Hydrogel Electrolyte: High Ionic Conductivity and Wide Working Temperature Range

材料科学 聚乙烯醇 离子电导率 电解质 锂(药物) 聚氯乙烯 氯化锂 离子键合 电导率 大气温度范围 化学工程 氯化物 无机化学 复合材料 离子 有机化学 冶金 物理化学 化学 电极 医学 物理 气象学 工程类 内分泌学
作者
Cheng Tang,Yinzhuo Yao,Manni Li,Yaling Wang,Yan Zhang,Jian Zhu,Ling Wang,Lei Li
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202417207
摘要

Abstract Polyvinyl alcohol/lithium chloride hydrogel (PVA/LiCl) is one of the most used electrolyte in supercapacitors. Increasing the ionic conductivity and operating temperature range of PVA/LiCl would greatly boost the electrochemical performance of supercapacitors and enhance the devices’ environmental adaptability. This is of great significance yet rarely concerned about in energy communities. In this work, SiO 2 functionalized PVA/LiCl (PVA‐SiO 2 /LiCl) is experimentally realized with high ionic conductivity and wide operating temperature range. The spectroscopic and theoretical experiments prove that SiO 2 significantly regulates cation solvation structure to promote cation‐anion pair dissociation and diminish coagulation of PVA chains, increasing ionic conductivity from 19.01 mS cm −1 of PVA/LiCl to 56.17 mS cm −1 of the new electrolyte. SiO 2 can also prevent cation‐anion association as temperature decreases, and the abundant hydroxyl groups on the SiO 2 and the stretched PVA chains tune hydrogen bonds among dipolar water molecules. They effectively expand the operating temperature range of PVA‐SiO 2 /LiCl. PVA‐SiO 2 /LiCl greatly boosts the electrochemical performance of MnO 2 ‐based supercapacitor. The design concept developed here opens up a way toward high‐performance hydrogel electrolyte development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳的菠萝完成签到,获得积分10
1秒前
jy发布了新的文献求助10
1秒前
2秒前
2秒前
mfstone发布了新的文献求助10
2秒前
LiLi完成签到,获得积分10
3秒前
仁爱的老四完成签到 ,获得积分10
4秒前
李健的小迷弟应助学术z采纳,获得10
4秒前
科研通AI5应助归海紫翠采纳,获得30
5秒前
热情的初兰完成签到 ,获得积分10
6秒前
顺顺完成签到,获得积分10
6秒前
莫妮卡卡完成签到,获得积分10
6秒前
nbing完成签到,获得积分10
7秒前
SCI发布了新的文献求助50
7秒前
小猫多鱼完成签到,获得积分10
8秒前
8秒前
8秒前
默默尔烟发布了新的文献求助10
8秒前
8秒前
8秒前
宁静致远完成签到,获得积分10
8秒前
天天快乐应助内向秋寒采纳,获得10
11秒前
sfafasfsdf完成签到,获得积分10
11秒前
11秒前
luuuuuu发布了新的文献求助10
12秒前
lai发布了新的文献求助30
12秒前
12秒前
zrk发布了新的文献求助10
12秒前
12秒前
13秒前
ZJJ完成签到,获得积分10
13秒前
花开的声音1217完成签到,获得积分10
14秒前
古药完成签到,获得积分10
15秒前
赘婿应助烟雨行舟采纳,获得10
15秒前
seal发布了新的文献求助10
16秒前
16秒前
17秒前
不吃香菜发布了新的文献求助10
17秒前
RC_Wang应助ZJJ采纳,获得10
17秒前
Chridy发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794