N6-Methylandenosine-related lncRNAs as potential biomarkers for predicting prognosis and the immunotherapy response in pancreatic cancer

胰腺癌 免疫疗法 癌症 医学 癌症免疫疗法 生物标志物 肿瘤科 内科学 计算生物学 生物 遗传学
作者
Zhihui Bai,Qianlin Xia,Wanli Xu,Zhirong Wu,Xiaomeng He,Xin Zhang,Zhefeng Wang,Mengting Luo,Huaqin Sun,Song‐Mei Liu,Jin Wang
出处
期刊:Cellular and Molecular Life Sciences [Springer Nature]
卷期号:82 (1)
标识
DOI:10.1007/s00018-024-05573-w
摘要

Emerging evidence has shown that the N6-methyladenosine (m6A) modification of RNA plays key roles in tumorigenesis and the progression of various cancers. However, the potential roles of the m6A modification of long noncoding RNAs (lncRNAs) in pancreatic cancer (PaCa) are still unknown. To analyze the prognostic value of m6A-related lncRNAs in PaCa, an m6A-related lncRNA signature was constructed as a risk model via Pearson's correlation and univariate Cox regression analyses in The Cancer Genome Atlas (TCGA) database. The tumor microenvironment (TME), tumor mutation burden, and drug sensitivity of PaCa were investigated by m6A-related lncRNA risk score analyses. We established an m6A-related risk prognostic model consisting of five lncRNAs, namely, LINC01091, AC096733.2, AC092171.5, AC015660.1, and AC005332.6, which not only revealed significant differences in immune cell infiltration associated with the TME between the high-risk and low-risk groups but also predicted the potential benefit of immunotherapy for patients with PaCa. Drugs such as WZ8040, selumetinib, and bortezomib were also identified as more effective for high-risk patients. Our results indicate that the m6A-related lncRNA risk model could be an independent prognostic indicator, which may provide valuable insights for identifying therapeutic approaches for PaCa.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蔓越莓完成签到 ,获得积分10
刚刚
1秒前
cy发布了新的文献求助10
1秒前
wssy发布了新的文献求助10
2秒前
4秒前
Hello应助大力成危采纳,获得30
5秒前
RSU完成签到,获得积分10
5秒前
Lucas应助华从梦采纳,获得10
5秒前
开放草莓完成签到 ,获得积分10
5秒前
星辰大海应助贪玩飞珍采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
魁梧的钧完成签到,获得积分10
7秒前
7秒前
椿人发布了新的文献求助10
7秒前
科研通AI2S应助tidongzhiwu采纳,获得10
7秒前
双丁宝贝发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
超帅的白易完成签到 ,获得积分10
12秒前
稳稳完成签到,获得积分20
12秒前
上官若男应助双丁宝贝采纳,获得10
13秒前
枫莘梓完成签到 ,获得积分10
13秒前
14秒前
15秒前
张继铎完成签到,获得积分10
15秒前
甜甜谷波发布了新的文献求助10
15秒前
lrsabrina发布了新的文献求助10
15秒前
15秒前
Rollei应助科研通管家采纳,获得10
16秒前
Rollei应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
Rollei应助科研通管家采纳,获得10
17秒前
Rollei应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734444
求助须知:如何正确求助?哪些是违规求助? 5354521
关于积分的说明 15327063
捐赠科研通 4879158
什么是DOI,文献DOI怎么找? 2621708
邀请新用户注册赠送积分活动 1570833
关于科研通互助平台的介绍 1527681