Generalized composite multiscale improved diversity entropy and its application to diesel injector fault feature extraction and diagnosis

复合数 喷油器 熵(时间箭头) 特征提取 柴油 模式识别(心理学) 环境科学 计算机科学 数学 汽车工程 人工智能 工程类 算法 物理 机械工程 热力学
作者
Xianchun Zou,Enzhe Song,J. H. Song,Yun Ke,Nannan Sun,Chong Yao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241296789
摘要

The diesel injector is the core component of marine diesel engines, and its health monitoring is one of the keys to ensuring the efficient and reliable operation of diesel engines and even ships. However, extracting effective feature information from nonlinear dynamic signals is the difficulty in realizing intelligent fault diagnosis of diesel fuel injectors. The existing diversity entropy (DE) is an advanced algorithm for extracting fault features. Still, it has the problem of failing to obtain sufficiently effective fault features, thus affecting diagnostic accuracy due to its inherent defects. To solve the above problem, a new generalized composite multiscale improved diversity entropy (GCMIDE) is first proposed, and the comparative advantages of the proposed entropy in terms of consistency, robustness, and computational efficiency are verified with common noise-simulated signals. GCMIDE is further utilized as an excellent means of feature extraction, and a new injector fault diagnosis method, GCMIDE-Relieff-SSA-BP, is proposed to meet the needs of efficiency and practicality in fault diagnosis. Finally, the method is adopted for the diagnostic experiments of diesel fuel injectors with different fault types and different fault degrees for full validation. The experimental results all indicate that, in comparison with six commonly used entropy-based fault diagnosis methods, the proposed method has the best feature extraction performance and fault diagnosis accuracy under a different number of features or different training sample ratios. This provides an effective tool for fault diagnosis of injectors and even intelligent operation and maintenance of diesel engines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万刈完成签到,获得积分10
2秒前
yimu发布了新的文献求助10
2秒前
贰鸟应助mitty采纳,获得20
2秒前
贰鸟应助mitty采纳,获得20
2秒前
贰鸟应助mitty采纳,获得20
2秒前
贰鸟应助mitty采纳,获得20
2秒前
3秒前
斯文败类应助笨笨的怜雪采纳,获得20
3秒前
4秒前
SciGPT应助风趣安青采纳,获得10
5秒前
美好乐松应助poyo采纳,获得20
6秒前
6秒前
7秒前
8秒前
杨帅康完成签到,获得积分10
8秒前
搜集达人应助bobo采纳,获得50
8秒前
q1010611084发布了新的文献求助10
9秒前
9秒前
111111完成签到,获得积分10
10秒前
sxyyy发布了新的文献求助10
10秒前
fff123完成签到,获得积分10
11秒前
Orange应助楠楠多多采纳,获得30
14秒前
无花果应助第五个完全数采纳,获得10
15秒前
fgh完成签到,获得积分10
15秒前
雅y823完成签到,获得积分20
18秒前
hpp完成签到,获得积分10
19秒前
李健应助杨帅康采纳,获得10
19秒前
lxt完成签到,获得积分10
22秒前
老迟到的幼枫完成签到,获得积分10
23秒前
23秒前
23秒前
Dr.YYF.完成签到,获得积分10
26秒前
11发布了新的文献求助20
28秒前
小太阳发布了新的文献求助10
29秒前
李云龙应助易烊干洗采纳,获得50
31秒前
Huuu完成签到,获得积分10
32秒前
LY完成签到,获得积分10
33秒前
33秒前
34秒前
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156078
求助须知:如何正确求助?哪些是违规求助? 2807458
关于积分的说明 7873196
捐赠科研通 2465782
什么是DOI,文献DOI怎么找? 1312412
科研通“疑难数据库(出版商)”最低求助积分说明 630102
版权声明 601905