Visualization and Analysis of Knowledge Graph for the Integration of Traditional Culture and Rural Tourism Industry

中心性 旅游 计算机科学 图形绘制 图形 可视化 知识抽取 突出 知识管理 业务 数据挖掘 地理 理论计算机科学 人工智能 数学 考古 组合数学
作者
Rong Ai,Jianwei Song,Xiaowei Xie
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns.2023.2.01308
摘要

Abstract In order to promote the integrated development of culture and the tourism industry, this paper explores the integration of traditional culture and the rural tourism industry. Firstly, a bottom-up knowledge graph construction method is designed based on the DGCN relational extraction model, Muhead-CU-FL-BE entity extraction model and Neo4j high-performance graph database. Then, based on the domain and characteristics of traditional culture and rural tourism industry integration, the knowledge graph of rural traditional culture and tourism industry integration is constructed from three aspects: line results, ontology model and description of this paper. Finally, the performance of the knowledge graph constructed in this paper is tested on the relevant dataset, and the visualization analysis of industrial integration is carried out through the constructed knowledge graph. The results show that the overall performance of the relationship extraction algorithm in this paper is around 0.7, the entity extraction algorithm has the best performance, and the overall performance is around 0.8, and the ratio of the public ancestor nodes of 5 times linking in the 5th and 6th layers is greater than 0.65. The centrality of culture and tourism industry, cultural and tourism fusion, high-quality development, culture and tourism, and industry fusion are 0.78, 0.60, 0.58, and 0.80. The centrality of the keywords is 0.78, 0.60, 0.58, and 0.80, respectively, 1.00, and the strength of the salient values of each keyword is concentrated around 1~3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zzz发布了新的文献求助10
3秒前
丘比特应助独木舟采纳,获得10
3秒前
金金金发布了新的文献求助10
4秒前
5秒前
6秒前
酷酷问梅完成签到,获得积分10
6秒前
激动的慕凝应助哈哈哈采纳,获得10
7秒前
背后河马发布了新的文献求助10
8秒前
8秒前
Yen完成签到,获得积分10
9秒前
田一发布了新的文献求助10
10秒前
打打应助mmyhn采纳,获得30
10秒前
研友_ZGjgjn发布了新的文献求助30
13秒前
SweetyTian完成签到,获得积分10
14秒前
万能图书馆应助lkc采纳,获得10
15秒前
七月完成签到 ,获得积分10
16秒前
zzz完成签到,获得积分10
16秒前
廖同学完成签到 ,获得积分10
16秒前
wanci应助阔达白竹采纳,获得10
17秒前
18秒前
21秒前
Lucas应助T拐拐采纳,获得10
22秒前
23秒前
24秒前
24秒前
26秒前
小二郎应助风中的大树采纳,获得10
26秒前
Joe关注了科研通微信公众号
27秒前
酷酷问梅发布了新的文献求助20
27秒前
27秒前
29秒前
29秒前
细胞核发布了新的文献求助10
30秒前
小船完成签到,获得积分10
30秒前
情怀应助zy采纳,获得10
30秒前
努力努力发布了新的文献求助10
31秒前
娜行发布了新的文献求助10
32秒前
33秒前
Cheryy完成签到,获得积分10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313711
求助须知:如何正确求助?哪些是违规求助? 2946043
关于积分的说明 8528118
捐赠科研通 2621632
什么是DOI,文献DOI怎么找? 1433987
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650651