Unveiling the molecular mechanism of 1,3,2-dioxathiolane 2,2-dioxide in a propylene carbonate-based battery electrolyte

碳酸丙烯酯 电解质 电池(电) 碳酸盐 机制(生物学) 无机化学 化学 材料科学 化学工程 有机化学 物理化学 热力学 工程类 电极 物理 功率(物理) 量子力学
作者
Jaeho Lee,Kyoung-Hee Shin,Young‐Kyu Han
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:395: 123817-123817 被引量:2
标识
DOI:10.1016/j.molliq.2023.123817
摘要

Propylene carbonate (PC)-based electrolytes are gaining attention as next-generation electrolytes for use in high-voltage and high-temperature environments due to their superior stability at high voltages and their wide operating temperature range. However, commercialization is challenged by the exfoliation of the graphite anode, which is caused by the co-intercalation of PC. Various additives have been devised to address this issue. 1,3,2-dioxathiolane 2,2-dioxide (DTD) exhibits outstanding capacity retention and lifespan characteristics in lithium-ion batteries in which PC-based electrolytes are used, but a molecular-level understanding of its operating mechanism remains elusive. According to our quantum static and dynamics calculations, the Li+ binding energy of DTD is much lower than that of PC, rendering its coordination ability insufficient to compete with PC. As a result, the neutral DTD does not play a role in favoring the desolvation of PC from the solvation structure. However, DTD is reduced prior to PC and shows a strong reduction tendency accompanied by ring-opening. Based on this, DTD in its anionic form participates in the Li+ solvation sheath through a solvent–additive exchange reaction to promote the desolvation of PC. We reveal that the use of the charges of the oxygen atoms bonded to Li+ ions to interpret the Li+–solvent binding energies is inappropriate. Instead, we suggest the electrostatic potential minimum (ESPMin) as a useful and powerful descriptor. This work provides insights into the molecular characteristics and mechanisms of additives that enable PC-based electrolytes, offering guidance for the development of new additives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大曾完成签到,获得积分10
1秒前
宜醉宜游宜睡应助佩佩采纳,获得10
1秒前
坚强亦丝应助饱满的凡松采纳,获得10
2秒前
吉不二发布了新的文献求助30
2秒前
Jupiter发布了新的文献求助10
4秒前
renovel完成签到,获得积分10
4秒前
Chaga完成签到,获得积分10
4秒前
木子完成签到,获得积分10
5秒前
斯蒂芬库外完成签到,获得积分10
6秒前
6秒前
称心的新之完成签到,获得积分10
7秒前
耶啵8825完成签到,获得积分10
7秒前
FashionBoy应助飞雪残冰采纳,获得10
7秒前
迷你的冰巧完成签到,获得积分10
7秒前
7秒前
gxj完成签到,获得积分20
8秒前
Robe完成签到 ,获得积分10
8秒前
Brian_Fang完成签到,获得积分10
8秒前
HMZ完成签到,获得积分10
9秒前
Zombie完成签到,获得积分10
9秒前
9秒前
11秒前
liubo发布了新的文献求助30
12秒前
科研通AI2S应助潇潇采纳,获得10
12秒前
vivienne完成签到,获得积分10
13秒前
13秒前
甜丝丝发布了新的文献求助10
13秒前
xuan发布了新的文献求助10
13秒前
脑洞疼应助瑾玉采纳,获得10
14秒前
含蓄越彬完成签到,获得积分10
14秒前
愉快的千风完成签到,获得积分10
14秒前
MRM完成签到 ,获得积分10
15秒前
楠小秾完成签到,获得积分10
15秒前
coco发布了新的文献求助10
16秒前
XuX完成签到 ,获得积分10
16秒前
楠小秾发布了新的文献求助10
17秒前
18秒前
wuwuwu完成签到,获得积分10
18秒前
古卡可可完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158979
求助须知:如何正确求助?哪些是违规求助? 2810153
关于积分的说明 7886308
捐赠科研通 2468968
什么是DOI,文献DOI怎么找? 1314533
科研通“疑难数据库(出版商)”最低求助积分说明 630640
版权声明 602012