Unveiling the molecular mechanism of 1,3,2-dioxathiolane 2,2-dioxide in a propylene carbonate-based battery electrolyte

碳酸丙烯酯 电解质 电池(电) 碳酸盐 机制(生物学) 无机化学 化学 材料科学 化学工程 有机化学 物理化学 热力学 工程类 电极 物理 功率(物理) 量子力学
作者
Jaeho Lee,Kyoung-Hee Shin,Young‐Kyu Han
出处
期刊:Journal of Molecular Liquids [Elsevier BV]
卷期号:395: 123817-123817 被引量:2
标识
DOI:10.1016/j.molliq.2023.123817
摘要

Propylene carbonate (PC)-based electrolytes are gaining attention as next-generation electrolytes for use in high-voltage and high-temperature environments due to their superior stability at high voltages and their wide operating temperature range. However, commercialization is challenged by the exfoliation of the graphite anode, which is caused by the co-intercalation of PC. Various additives have been devised to address this issue. 1,3,2-dioxathiolane 2,2-dioxide (DTD) exhibits outstanding capacity retention and lifespan characteristics in lithium-ion batteries in which PC-based electrolytes are used, but a molecular-level understanding of its operating mechanism remains elusive. According to our quantum static and dynamics calculations, the Li+ binding energy of DTD is much lower than that of PC, rendering its coordination ability insufficient to compete with PC. As a result, the neutral DTD does not play a role in favoring the desolvation of PC from the solvation structure. However, DTD is reduced prior to PC and shows a strong reduction tendency accompanied by ring-opening. Based on this, DTD in its anionic form participates in the Li+ solvation sheath through a solvent–additive exchange reaction to promote the desolvation of PC. We reveal that the use of the charges of the oxygen atoms bonded to Li+ ions to interpret the Li+–solvent binding energies is inappropriate. Instead, we suggest the electrostatic potential minimum (ESPMin) as a useful and powerful descriptor. This work provides insights into the molecular characteristics and mechanisms of additives that enable PC-based electrolytes, offering guidance for the development of new additives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nicaicai完成签到,获得积分10
1秒前
1秒前
翟致远完成签到,获得积分10
1秒前
豆腐青菜雨应助许坤采纳,获得10
2秒前
YEM完成签到,获得积分10
2秒前
QIN完成签到,获得积分10
2秒前
领导范儿应助dora332211采纳,获得10
2秒前
3秒前
空古悠浪完成签到,获得积分10
3秒前
curtainai完成签到,获得积分10
3秒前
科研通AI5应助支雨泽采纳,获得10
3秒前
李笑发布了新的文献求助10
4秒前
衿_发布了新的文献求助10
4秒前
Megan发布了新的文献求助10
5秒前
5秒前
kelly完成签到,获得积分10
5秒前
无名之辈完成签到,获得积分10
6秒前
6秒前
三眼乌鸦发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
987完成签到 ,获得积分10
7秒前
顾矜应助pp采纳,获得10
8秒前
实验好难应助秀智采纳,获得10
8秒前
nuistd完成签到,获得积分10
8秒前
李爱国应助王科研采纳,获得10
8秒前
LSS完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI5应助aa采纳,获得10
9秒前
福star高照发布了新的文献求助30
9秒前
10秒前
传奇3应助南敏株采纳,获得10
10秒前
Wx发布了新的文献求助10
11秒前
Saw完成签到,获得积分10
11秒前
Dr彭0923完成签到,获得积分10
11秒前
123456完成签到,获得积分10
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758869
求助须知:如何正确求助?哪些是违规求助? 3301957
关于积分的说明 10120385
捐赠科研通 3016334
什么是DOI,文献DOI怎么找? 1656462
邀请新用户注册赠送积分活动 790431
科研通“疑难数据库(出版商)”最低求助积分说明 753871