Machine‐learning‐based morphological analyses of leaf epidermal cells in modern and fossil ginkgo and their implications for palaeoclimate studies

银杏 古生物学 新生代 银杏 生物 卷积神经网络 足迹 植物 地质学 计算机科学 人工智能 生物活性 体外 生药学 生物化学 构造盆地
作者
Li Zhang,Yongdong Wang,Micha Ruhl,Yuanyuan Xu,Yanbin Zhu,Pengcheng An,Hongyu Chen,Defei Yan
出处
期刊:Palaeontology [Wiley]
卷期号:66 (6) 被引量:3
标识
DOI:10.1111/pala.12684
摘要

Abstract Leaf stomata form an essential conduit between plant tissue and the atmosphere, thus presenting a link between plants and their environments. Changes in their properties in fossil leaves have been studied widely to infer palaeo‐atmospheric‐CO 2 in deep time, ranging from the Palaeozoic to the Cenozoic. Epidermal cells of leaves, however, have often been neglected for their usefulness in reconstructing past‐environments, as their irregular shape makes the manual analyses of epidermal cells a challenging and error‐prone task. Here, we used machine‐learning (using the U‐Net architecture, which evolved from a fully convolutional network) to segment epidermal cells automatically, to efficiently reduce artificial errors. We furthermore applied minimum bounding rectangles to extract length‐to‐width ratios ( R L/W ) from the irregularly shaped cells. We applied this to a dataset including over 21 000 stomata and 170 000 epidermal cells in 114 Ginkgo leaves from 16 locations spanning three climate zones in China. Our results show negative correlations between the R L/W and specific climatic parameters, suggesting that local temperature and precipitation conditions may have affected the R L/W of epidermal cells. We subsequently tested this methodology and the observations from the modern dataset on 15 fossil ginkgoaleans from the Lower to the Middle Jurassic (China). It suggested that the R L/W values of fossil ginkgo generally had a similar negative response to warmer climatic backgrounds as modern G. biloba . The automated analyses of large palaeo‐floral datasets provide a new direction for palaeoclimate reconstructions and emphasize the importance of hidden morphological characters of epidermal cells in ginkgoaleans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hahawang发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
研友_VZG7GZ应助董卓小蛮腰采纳,获得10
2秒前
2秒前
2秒前
2秒前
天宇发布了新的文献求助10
2秒前
li发布了新的文献求助10
2秒前
tiantale关注了科研通微信公众号
3秒前
心随以动发布了新的文献求助10
3秒前
smh完成签到,获得积分10
3秒前
浅惜应助zhaozhao228采纳,获得10
4秒前
5秒前
费费Queen发布了新的文献求助10
5秒前
豌豆射手完成签到,获得积分10
5秒前
粉红三倍速完成签到 ,获得积分10
5秒前
5秒前
科研通AI2S应助coollz采纳,获得10
6秒前
王阳阳发布了新的文献求助10
6秒前
甜甜灵槐完成签到 ,获得积分10
7秒前
aldblm完成签到,获得积分10
7秒前
bonnieeee777完成签到,获得积分10
8秒前
天宇完成签到,获得积分10
10秒前
别闹闹发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
我是老大应助偶哩哇呐采纳,获得10
14秒前
15秒前
15秒前
16秒前
开心的大娘完成签到,获得积分10
16秒前
Hello应助机智半双采纳,获得10
17秒前
华仔应助一击必中采纳,获得10
17秒前
满月完成签到,获得积分10
17秒前
yichang_2008完成签到,获得积分10
18秒前
丁三问发布了新的文献求助10
18秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168812
求助须知:如何正确求助?哪些是违规求助? 2820111
关于积分的说明 7929423
捐赠科研通 2480192
什么是DOI,文献DOI怎么找? 1321277
科研通“疑难数据库(出版商)”最低求助积分说明 633136
版权声明 602497